### Tetrahedron 66 (2010) 9203-9213

Contents lists available at ScienceDirect

### Tetrahedron

journal homepage: www.elsevier.com/locate/tet

# Synthesis of carbosilane dendrons and dendrimers derived from 1,3,5-trihydroxybenzene

Javier Sánchez-Nieves<sup>a, c</sup>, Paula Ortega<sup>a, c</sup>, M. Ángeles Muñoz-Fernández<sup>b, c</sup>, Rafael Gómez<sup>a, c, \*</sup>, F. Javier de la Mata<sup>a, c, \*</sup>

<sup>a</sup> Dpto. de Química Inorgánica, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, E-28871 Madrid, Spain <sup>b</sup> Laboratorio de Inmunología Molecular, Hospital General Gregorio Marañón, Madrid, Spain <sup>c</sup> CIBER-BBN, Zaragoza, Spain

### ARTICLE INFO

Article history: Received 21 July 2010 Received in revised form 9 September 2010 Accepted 17 September 2010 Available online 22 September 2010

*Keywords:* Dendron Dendrimer Silicon Allyl

### ABSTRACT

Several carbosilane wedges of generations 1–3 have been synthesized, following the divergent method, containing at the focal point a C–Br bond and as peripheral functional groups SiMeCl<sub>2</sub>, SiMe(C<sub>3</sub>H<sub>5</sub>)<sub>2</sub>, SiMe<sub>2</sub>Cl, SiMe<sub>2</sub>H, and ester units SiMe<sub>2</sub>{(C<sub>3</sub>H<sub>6</sub>)N(C<sub>2</sub>H<sub>4</sub>CO<sub>2</sub>Me)<sub>2</sub>}. The dendrons functionalized with SiMe (C<sub>3</sub>H<sub>5</sub>)<sub>2</sub> and SiMe<sub>2</sub>{(C<sub>3</sub>H<sub>6</sub>)N(C<sub>2</sub>H<sub>4</sub>CO<sub>2</sub>Me)<sub>2</sub>} groups were used to synthesize spherical dendrimers derived from 1,3,5-(HO)<sub>3</sub>C<sub>6</sub>H<sub>3</sub>, leaving the outer groups unchanged. The allyl dendrimers thus obtained were used as precursors to prepare new dendrimers functionalized with SiMe<sub>2</sub>{(C<sub>3</sub>H<sub>6</sub>)N(C<sub>2</sub>H<sub>4</sub>CO<sub>2</sub>Me)<sub>2</sub>} and siMe<sub>2</sub>{(C<sub>3</sub>H<sub>6</sub>)NH<sub>2</sub>} and also ester units SiMe<sub>2</sub>{(C<sub>3</sub>H<sub>6</sub>)N(C<sub>2</sub>H<sub>4</sub>CO<sub>2</sub>Me)<sub>2</sub>}.

© 2010 Elsevier Ltd. All rights reserved.

Tetrahedror

### 1. Introduction

Dendrimer molecules have been studied for several applications as catalysis, material sciences and nano-biotechnology.<sup>1–14</sup> Some of the reasons that have attracted the interest toward these molecules are their well defined and uniform branching structure, multivalency, and variety of typologies.<sup>15–17</sup> For biomedical applications, apart from low cytotoxicity, the surface of the dendrimers has to give adequate solubility in aqueous media.<sup>18–21</sup> Dendrimers functionalized at the periphery with amine groups can fulfill this goal by their own or being transformed to cationic<sup>22–27</sup> or anionic<sup>28–30</sup> functionalities.

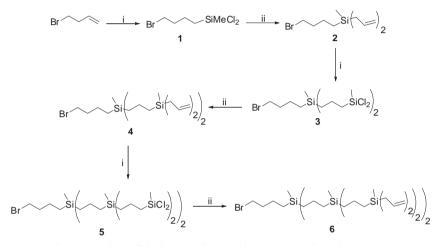
One type of dendrimer molecules is formed by a carbosilane scaffold.<sup>31–38</sup> The strength of these dendrimers is related to the high energy of the C–Si bond and also its low polarity. This last characteristic of the C–Si bond endows high hydrophobicity to carbosilane dendrimers. However, this can be modified by functionalization of the periphery with polar moieties, turning them hydrophilic and thus, carbosilane dendrimers have also been used in biomedical applications.<sup>39–44</sup>

Dendrimers are synthesized following two main synthetic methods.<sup>45–47</sup> The divergent approach builds dendrimers from the core to the periphery, whereas the convergent methodology consists in the opposite procedure. This second method generates the so-called dendritic wedges or dendrons, which are cone-shaped molecules with two different functions, one at the periphery and other at the focal point. This last procedure also gives dendrimers with lower dispersity, due to the formation of less damaged branches during their synthesis. Furthermore, dendrons can be employed to synthesize asymmetrical dendrimers by coupling different units.<sup>48–50</sup> Carbosilane dendrimers have been mainly synthesized following the divergent synthesis, although a few examples of carbosilane wedges are known.<sup>51–54</sup>

In this work, we present the synthesis of new carbosilane dendrons synthesized by divergent procedures with a C–Br bond at their focal point. Some of the new dendrons here obtained have been also used as building blocks for spherical dendrimers by coupling with 1,3,5-(HO)<sub>3</sub>C<sub>6</sub>H<sub>3</sub>. We are interested to obtain water soluble dendrons and dendrimers for various biomedical applications and, for that reason, precursors for these molecules containing amine or ester groups as terminated units have been synthesized. Furthermore, the presence of the 1,3,5-(O)<sub>3</sub>C<sub>6</sub>H<sub>3</sub> core would lead to carbosilane dendrimers less congested than related dendrimers with a silicon atom core.<sup>41</sup>

### 2. Results and discussion

### 2.1. Carbosilane wedges


The synthesis of the carbosilane wedges have been carried out following previous described procedures,<sup>52</sup> consistent in



<sup>\*</sup> Corresponding authors. Tel.: +34 91 885 4685; fax: +34 91 885 4683; e-mail addresses: rafael.gomez@uah.es (R. Gómez), javier.delamata@uah.es (F.J. de la Mata).

<sup>0040-4020/\$ –</sup> see front matter @ 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2010.09.063

hydrosilylation with chlorosilanes of an alkenyl group and subsequent alkenylation with a Grignard reagent. Thus, starting from 4-Br-butene and employing HSiCl<sub>2</sub>Me, in the presence of Karstedt Pt catalyst,<sup>55</sup> and MgBr(C<sub>3</sub>H<sub>5</sub>), the dendritic wedges  $BrG_n(SiCl_2)_m$  (n=1, m=1 (**1**); n=2, m=2 (**3**); n=3, m=4 (**5**)) and  $BrG_n(C_3H_5)_m$  (n=1, m=2(**2**); n=2, m=4 (**4**); n=3, m=8 (**6**)) (generations 1–3) were obtained after repeating each pair of steps the number of required times (Scheme 1, Fig. 1). We have considered increase of generation in these dendrons, and also dendrimers, after hydrosilylation with HSiCl<sub>2</sub>Me. With this procedure, the C–Br bond located at the focal point remained unaltered in the alkenylation reaction of the Si–Cl bond. The yield of these reactions was independent of the dendron generation, being over 95% for the hydrosilylation and over 75% for the alkenylation reaction. at ca.  $\delta$  0.80 belonging to the SiMeCl<sub>2</sub> methyl group and also the disappearance of the resonances belonging to the allyl moiety. In the <sup>13</sup>C NMR spectra of these compounds, the resonance of these peripheral SiMeCl<sub>2</sub> methyl groups was observed about  $\delta$  5.0. On the other hand, the <sup>1</sup>H NMR spectra of the allyl dendrons BrG<sub>n</sub>(C<sub>3</sub>H<sub>5</sub>)<sub>m</sub> (**2**, **4**, **6**) showed the characteristics signals of the allyl group, a doublet about  $\delta$  1.50 (SiCH<sub>2</sub>-CH), and two multiplets about  $\delta$  4.60 (CH=CH<sub>2</sub>) and  $\delta$  5.10 (CH=CH<sub>2</sub>) and also the displacement of the external SiMe(C<sub>3</sub>H<sub>5</sub>)<sub>2</sub> methyl group to lower frequency ( $\delta$ =-0.50). A similar behavior was observed in the <sup>13</sup>C NMR spectra of these compounds with respect to the peripheral SiMe(C<sub>3</sub>H<sub>5</sub>)<sub>2</sub> methyl groups, observing a resonance about  $\delta$  -5.0. With respect to the allyl moiety, the resonances corresponding to the Csp<sup>2</sup> atoms were observed at ca.  $\delta$  113.0 and  $\delta$  135.0. In all these compounds, the



Scheme 1. Synthesis of dendrons 1–6. (i) HSiMeCl<sub>2</sub>, Karstedt's catalyst; (ii) MgBr(C<sub>3</sub>H<sub>5</sub>).

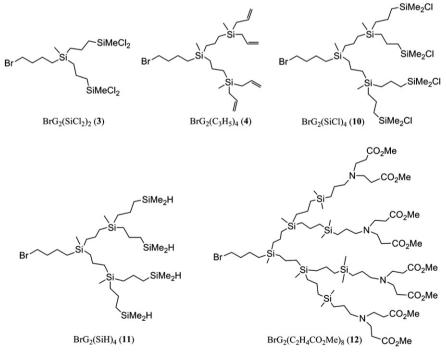
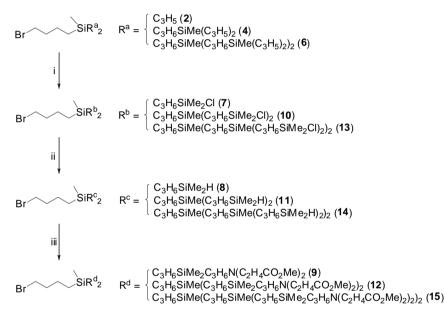



Fig. 1. Drawing of G2 dendrons synthesized in this work.

These compounds were characterized by NMR spectroscopy (<sup>1</sup>H, <sup>13</sup>C, <sup>29</sup>Si) and elemental analysis. Formation of the  $BrG_n(SiCl_2)_m$  (**1**, **3**, **5**) dendrons was confirmed in the <sup>1</sup>H NMR spectra by one singlet


presence of the Br atom at the focal point was confirmed in the <sup>1</sup>H NMR spectra by a triplet at  $\delta$  ca. 2.40 and in the <sup>13</sup>C NMR spectra by one resonance at  $\delta$  ca. 31.5. Also, for these two type of compounds,

 $^{1}\text{H}-^{29}\text{Si}$  2D HMBC spectroscopy was used to determine the presence of the different Si atoms. The resonance corresponding to the Si atom of the SiMeCl<sub>2</sub> group was observed about  $\delta$  31.0, that to the peripheral SiMe(allyl)<sub>2</sub> groups between  $\delta$  2–3 and that of the internal SiMe(CH<sub>2</sub>)<sub>3</sub> about  $\delta$  1.0.

The next goal in this work was to transform the periphery of the allyl-terminated  $BrG_n(C_3H_5)_m$  dendrons to terminal Si-H units. This was achieved by hydrosilylation the allyl substituents with HSi-Me<sub>2</sub>Cl, also in the presence of Karstedt Pt catalyst, and then by Cl/H substitution with LiAlH<sub>4</sub>. Dendritic wedges of generation 1–3  $BrG_n(SiCl)_m$  (n=1, m=2 (**7**); n=2, m=4 (**10**); n=3, m=8 (**13**)) and  $BrG_n(SiH)_m$  (n=1, m=2 (**8**); n=2, m=4 (**11**); n=3, m=8 (**14**)) (Scheme 2, Fig. 1) were thus synthesized. It is important to note that this last reaction did not affect the Br-C bond at the focal point, as was confirmed by NMR spectroscopy (see above). Again, the yield of these reactions was independent of the dendron generation, being over 95% for the hydrosilylation and over 70% for the substitution reaction. It is important to note that heating the hydrosilylation reaction speed up this process and also reduced the presence of damaged branches by isomerization of the allyl moiety.<sup>56</sup>

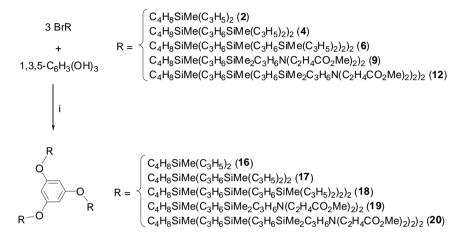
C—Br bond at the focal point favored the quaternization of the N atom instead of hydrosilylation of the amine, leading to a mixture of compounds.

However, with the aim to obtain a dendritic wedge with terminal ester groups, we studied the reaction of Si–H dendrons 8. 11. and 14 with  $(C_3H_5)N(C_2H_4CO_2Me)_2$ .<sup>57</sup> In this case, the hydrosilvlation in the presence of Pt catalyst proceeded smoothly giving the desired compounds  $BrG_n(C_2H_4CO_2Me)_m$  (n=1, m=4 (9); n=2, *m*=8 (12); *n*=3, *m*=16 (15)) (Scheme 2, Fig. 1) in high yields (over 90%). It is important to note that the ester moiety remained unaltered in this reaction, not observing hydrosilylation of the C=O bond. The reaction was followed by NMR spectroscopy. The disappearance of the doublet belonging to the starting SiMe<sub>2</sub>H methyl groups and the multiplet of the SiH proton was indicative of the outcome of the reaction. The main resonances of the <sup>1</sup>H NMR spectra of compounds 9, 12 and 15 are the singlets at ca.  $\delta$  3.60 belonging to the OMe methyl groups, the two triplets about  $\delta$  2.40 and  $\delta$  2.70 for the CH<sub>2</sub> groups of the chain NC<sub>2</sub>H<sub>4</sub>CO<sub>2</sub>Me and the triplet about  $\delta$  2.35 for the innermost CH<sub>2</sub>N groups. A <sup>1</sup>H–<sup>1</sup>H TOCSY NMR experiment showed clearly the presence of the new Si(CH<sub>2</sub>)<sub>3</sub>N

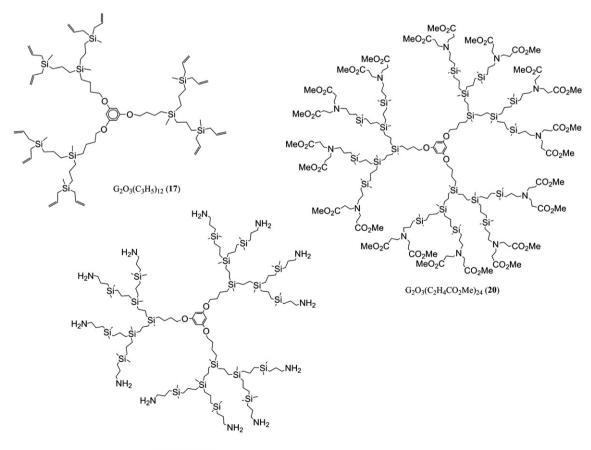


Scheme 2. Synthesis of dendrons functionalized with SiMe<sub>2</sub>Cl, SiMe<sub>2</sub>H, and SiMe<sub>2</sub>{( $C_3H_6$ )N( $C_2H_4CO_2Me_{2}$ } groups. (i) HSiMe<sub>2</sub>Cl, Karstedt's catalyst, 60 °C; (ii) LiAlH<sub>4</sub>; (iii) ( $C_3H_5$ )N ( $C_2H_4CO_2Me_{2}$ , Karstedt's catalyst, r. t.

All these new compounds were also characterized by NMR spectroscopy (<sup>1</sup>H, <sup>13</sup>C, <sup>29</sup>Si) and elemental analysis. The <sup>1</sup>H NMR spectra of dendrons **7**, **10** and **13** showed one singlet at ca.  $\delta$  0.40 belonging to the SiMe<sub>2</sub>Cl methyl groups while the <sup>1</sup>H NMR spectra of the hydride dendrons **8**, **11**, and **14** showed one multiplet at about  $\delta$  4.80 corresponding to the SiH proton and one doublet at about  $\delta$  0.04 for the SiMe<sub>2</sub>H methyl groups. A similar behavior was observed in the <sup>13</sup>C NMR spectra of these compounds with respect to the Me<sub>2</sub>Si group, observing a resonance about  $\delta$  2.0 for compounds **7**, **10**, and **13** and about  $\delta$  –4.0 for compounds **8**, **11**, and **14**. The presence of the SiMe<sub>2</sub>Cl group was also confirmed in the <sup>1</sup>H–<sup>29</sup>Si HMBC spectra by one cross peak at about  $\delta$  31.0 for this Si atom, whereas the SiMe<sub>2</sub>H groups gave a resonance clearly a lower frequency ( $\delta$  ca. –14.0) than any other silyl group in the molecule.


As it has been comment before, dendrimers containing NH<sub>2</sub> groups on the surface can be employed as precursors of cationic NH<sub>3</sub><sup>+</sup> and also anionic dendrimers. Thus, we tried to obtain dendrons with peripheral NH<sub>2</sub> groups by hydrosilylation of allylamine (C<sub>3</sub>H<sub>5</sub>)NH<sub>2</sub> with compounds  $BrG_n(SiH)_m$  (**8**, **11**, **14**), following previously reported procedure.<sup>41</sup> Unfortunately, the presence of the

chain, with three cross peaks about  $\delta$  2.35,  $\delta$  1.35, and  $\delta$  0.35. In the <sup>13</sup>C NMR spectroscopy, the main resonances were the corresponding to the CO groups at  $\delta$  ca. 173.0 and those for both C–N ( $\delta$  ca. 49.2 and 57.5) and C–CO ( $\delta$  ca. 32.5) carbon atoms. With respect to the <sup>29</sup>Si NMR spectroscopy, the disappearance of the low frequency resonance of the SiMe<sub>2</sub>H silicon atom at  $\delta$  ca. –14.0 and the observation of a new one at  $\delta$  ca. –4.0 belonging to a new SiMe<sub>2</sub> silicon atom also confirmed this reaction.

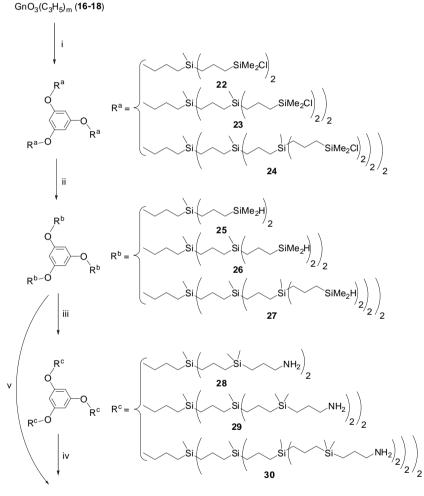

#### 2.2. Carbosilane dendrimers

The new dendrons synthesized were employed as synthons for generation of new spherical dendrimers via convergent methodology. The core selected for this purpose was the polyphenolic derivative 1,3,5-(HO)<sub>3</sub>C<sub>6</sub>H<sub>3</sub>, as the introduction of Br–C bond containing ligands to this type of units is well documented and proceed through a simple methodology.<sup>47,58</sup> The dendritic wedges with Si–Cl terminal groups BrG<sub>n</sub>(SiCl<sub>2</sub>)<sub>m</sub> and BrG<sub>n</sub>(SiCl)<sub>m</sub> were discharged for this reaction, due to the high reactivity of this bond. The reaction with the Si–H terminated dendrons BrG<sub>n</sub>(SiH)<sub>m</sub> failed probably due to side-reactions of this bond with the base  $K_2CO_3$  or even with the  $CO_2$  released during this process. However, the reaction was successful with the allyl  $BrG_n(C_3H_5)_m$  (**3**, **4**, and **6**) and ester  $BrG_n(C_2H_4CO_2Me)_m$  (**9**, **12**) wedges, obtaining the respective allyl  $G_nO_3(C_3H_5)_m$  (n=1, m=6 (**16**); n=2, m=12 (**17**); n=3, m=24(**18**)) and ester  $G_nO_3(C_2H_4CO_2Me)_m$  (n=1, m=12 (**19**); n=2, m=24(**20**)) dendrimers (Scheme 3, Fig. 2). In contrast with the synthesis of the dendritic wedges, now the reaction time is clearly dependent on the generation wedge, lasting from few days for G1 to ca. 3 weeks for G3. In the particular case of the ester wedges, the corresponding  $G_2$  dendrimer  $G_2O_3(C_2H_4CO_2Me)_{24}$  was obtained with rather low yield and the reaction to synthesize the  $G_3$  dendrimer was unsuccessful.

The main NMR data that confirm formation of these compounds are the resonances of the newly formed CH<sub>2</sub>–O groups, which are observed in the <sup>1</sup>H NMR spectra at  $\delta$  ca. 3.80 and in the <sup>13</sup>C NMR spectra at  $\delta$  ca. 67.0. Furthermore, the C<sub>6</sub>H<sub>3</sub> core gave in the <sup>1</sup>H NMR spectra one singlet about  $\delta$  6.00 and in the <sup>13</sup>C NMR spectra two resonances about  $\delta$  94.0 and  $\delta$  161.0 for the CH and *i*-C carbon atoms, respectively, indicating the total substitution of the phenol groups. The rest of resonances in the NMR spectroscopy are essentially the same as those described for the corresponding dendrons.



Scheme 3. Synthesis of dendrimers with peripheral SiMe(C<sub>3</sub>H<sub>5</sub>)<sub>2</sub> and SiMe<sub>2</sub>{(C<sub>3</sub>H<sub>6</sub>)N(C<sub>2</sub>H<sub>4</sub>CO<sub>2</sub>Me)<sub>2</sub>} groups. (i) K<sub>2</sub>CO<sub>3</sub>, crown ether 18C6, 90 °C.




G2O3(NH2)12 (29)

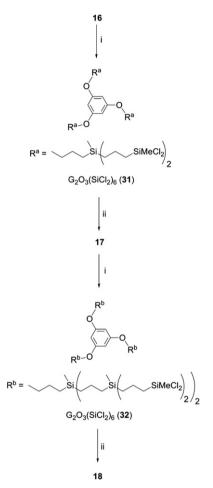
Fig. 2. Drawing of representative examples of G2 dendrimers synthesized in this work.

With this convergent procedure, we have been able to obtain ester dendrimers, precursors of anionic derivatives, although with low yields for higher generations, but not NH<sub>2</sub> functionalized ones, precursors of cationic dendrimers. For this purpose, we adopted the synthetic strategy described previously to synthesize functionalized amine spherical dendrimers<sup>41</sup> using the allyl dendrimers  $G_nO_3(C_3H_5)_m$  **16–18**. Thus, hydrosilylation of **16–18** with HSiMe<sub>2</sub>Cl afforded spherical dendrimers with SiMe<sub>2</sub>Cl terminated groups,  $G_nO_3(SiCl)_m$  (n=1, m=6 (**22**); n=2, m=12 (**23**); n=3, m=24 (**24**)), and then Cl/H exchange with LiAlH<sub>4</sub> led to dendrimers with SiMe<sub>2</sub>H groups,  $G_nO_3(SiH)_m$  (n=1, m=6 (**25**); n=2, m=12 (**26**); n=3, m=24(**27**)) (Scheme 4). The NMR data of all these dendrimers are the expected, as they have been described in the related dendrons (see above and also Experimental part). belonging to the starting SiMe<sub>2</sub>H methyl groups and the multiplet belonging to the SiH proton was indicative of the outcome of the reaction. Furthermore, a new resonance about  $\delta$  2.65 corresponding to the CH<sub>2</sub>N group was observed. The presence of the new Si(CH<sub>2</sub>)<sub>3</sub>N chain was also confirmed by a <sup>1</sup>H TOCSY-1D experiment, with three resonances about  $\delta$  2.63,  $\delta$  1.40 and  $\delta$  0.48. In the <sup>13</sup>C NMR spectroscopy, the main resonance was that belonging to the CH<sub>2</sub>N carbon atom that gave a signal at  $\delta$  ca. 45.0. The <sup>29</sup>Si NMR spectroscopy showed the disappearance of the low frequency resonance of the SiMe<sub>2</sub>H silicon atom at  $\delta$  ca. –14.0 and the observation of a new one at  $\delta$  ca. –4.0 belonging to the new SiMe<sub>2</sub> silicon atom.

These dendrimers **28–30** reacted with methyl acrylate  $C_2H_3CO_2Me$  (room temperature, 16 h) to give the respective ester dendrimers  $G_nO_3(C_2H_4CO_2Me)_m$  **19–21** (Scheme 4, Fig. 2). How-



GnO<sub>3</sub>(C<sub>2</sub>H<sub>4</sub>CO<sub>2</sub>Me)<sub>m</sub> (19-21)

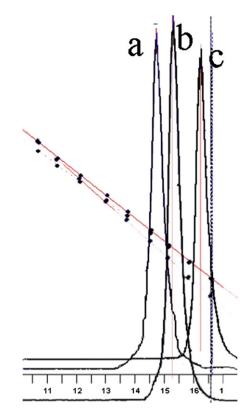

Scheme 4. Synthesis of dendrimers functionalized with SiMe<sub>2</sub>Cl, SiMe<sub>2</sub>H, SiMe<sub>2</sub>((C<sub>3</sub>H<sub>6</sub>)NH<sub>2</sub>), and SiMe<sub>2</sub>{(C<sub>3</sub>H<sub>6</sub>)N(C<sub>2</sub>H<sub>4</sub>CO<sub>2</sub>Me)<sub>2</sub>). (i) HSiMe<sub>2</sub>Cl, Karstedt's catalyst, 60 °C; (ii) LiAlH<sub>4</sub>; (iii) (C<sub>3</sub>H<sub>5</sub>)NH<sub>2</sub>, Karstedt's catalyst, 120 °C; (iv) C<sub>2</sub>H<sub>3</sub>CO<sub>2</sub>Me, rt; (v) (C<sub>3</sub>H<sub>5</sub>)N(C<sub>2</sub>H<sub>4</sub>CO<sub>2</sub>Me)<sub>2</sub>, Karstedt's catalyst.

Dendrimers **25–27** reacted with  $(C_3H_5)NH_2$ , in the presence of Karstedt's catalyst, to afford the amine dendrimers  $G_nO_3(NH_2)_m$  (n=1, m=6 (**28**); n=2, m=12 (**29**); n=3, m=24 (**30**)) (Scheme 4, Fig. 2), after several days over 120 °C. In this case, the yield was much lower for the G<sub>3</sub> **30** (30%) than for G<sub>1</sub> and G<sub>2</sub>, 85% and 70%, respectively. The difficulty to hydrosilylate amines would be increased in the G<sub>3</sub> compound **27** by higher congestion of functional groups. Formation of compounds **28–30** was confirmed by NMR spectroscopy. In the <sup>1</sup>H NMR spectra the disappearance of the doublet

ever, they could also be obtained in one-step from the Si–H functionalized dendrimers  $G_nO_3(SiH)_m$  **25–27** by reaction with  $(C_3H_5)N$   $(C_2H_4CO_2Me)_2$  in THF (Scheme 4), in the presence of Karstedt's catalyst, after 16 h at room temperature for  $G_1$  and  $G_2$  and at 40 °C for G3. In this case, this hydrosilylation proceeded smoothly even in the case of  $G_3$  dendrimer **27**, obtaining the respective ester dendrimers with high yields.

Finally, the allyl dendrimers  $G_nO_3(C_3H_5)_m$  (n=2, m=12 (**17**); n=3, m=24 (**18**)) could be also obtained following a divergent synthetic

strategy from the lower generation allyl dendrimer (**16** for **17** and **17** for **18**) by an analogous procedure described for the corresponding allyl dendrons (Scheme 5), namely hydrosilylation of the allyl dendrimer with HSiMeCl<sub>2</sub> and then alkenylation with MgBr (C<sub>3</sub>H<sub>5</sub>). With this method, the new dendrimers  $G_nO_3(\text{SiCl}_2)_m$  (n=2, m=6 (**31**); n=3, m=12 (**32**)) functionalized with SiMeCl<sub>2</sub> groups were isolated. These dendrimers were characterized by NMR spectroscopy, being their NMR spectra very similar to those described in the related dendrons Br $G_n(\text{SiCl}_2)_m$  (**1**, **3**, **5**) (see above and also Experimental part).




Scheme 5. Synthesis of dendrimers functionalized with SiMeCl<sub>2</sub> and SiMe( $C_3H_5$ )<sub>2</sub>. (i) HSiMeCl<sub>2</sub>, Karstedt's catalyst; (ii) MgBr( $C_3H_5$ ).

## 2.3. Characterization by gel permeation chromatography (GPC) and mass spectrometry

The GPC analyses have been performed for the most relevant dendrimers. The allyl dendrimers  $G_nO_3(C_3H_5)_m$  showed narrow polydispersity values (1.05 for **16**, 1.10 for **17**, 1.16 for **18**; Fig. 3). Similar values were obtained for the ester dendrimers  $G_nO_3(C_2H_4$ .  $CO_2Me)_m$  (**19–21**) synthesized by hydrosilylation of ( $C_3H_5$ )N ( $C_2H_4CO_2Me)_2$  with dendrimers  $G_nO_3(SiH)_m$  **25–27** (1.06 for **19**, 1.11 for **20**, 1.18 for **21**) and slightly higher for the amine dendrimers  $G_nO_3(NH_2)_m$  (1.13 for **28**, 1.21 for **29**, 1.40 for **30**). These values confirm the high monodispersity degree of these systems.

Two different mass spectrometry techniques were used for characterization of dendrons and dendrimers ESI and MALDI-TOF. The first one allowed us to determine the  $[M+H]^+$  peak of the dendrons BrG<sub>n</sub>(C<sub>2</sub>H<sub>4</sub>CO<sub>2</sub>Me)<sub>m</sub> (**9**, **12**, **15**), whereas MALDI-TOF technique was useful to find the  $[M+H]^+$  peak of dendrimers G<sub>1</sub>O<sub>3</sub>(C<sub>3</sub>H<sub>5</sub>)<sub>6</sub> (**16**), G<sub>1</sub>O<sub>3</sub>(C<sub>2</sub>H<sub>4</sub>CO<sub>2</sub>Me)<sub>12</sub> (**19**), and G<sub>n</sub>O<sub>3</sub>(SiH)<sub>m</sub> (n=1, m=6 (**25**); n=2,



**Fig. 3.** GPC diagram of G<sub>n</sub>O<sub>3</sub>(C<sub>3</sub>H<sub>5</sub>)<sub>m</sub> (**16** (a), **17** (b), **18** (c)).

m=12 (26)) and the [M+Na]<sup>+</sup> peak of dendrimers  $G_nO_3(C_3H_5)_m$  (n=2, m=12 (17); n=3, m=24 (18)). For the rest of compounds we could not observed the corresponding molecular peak.

### 3. Conclusions

Dendritic wedges of generations 1–3 with a C–Br bond at the focal point can be synthesized by iterative stepwise hydrosilylation and alkenylation reactions with HSiCl<sub>2</sub>Me and MgBr(C<sub>3</sub>H<sub>5</sub>), respectively. The allylic dendrons were also precursors of SiH functionalized dendrons after hydrosilylation with HSiClMe<sub>2</sub> and then Cl/H exchange with LiAlH<sub>4</sub>. Nor the alkenylation neither the reaction with LiAlH<sub>4</sub> affected the C–Br bond. Ester dendritic wedges can be also obtained from the SiH dendrons hydrosilylating with the allyl ester compound  $(C_3H_5)N(C_2H_4CO_2Me)_2$ . However, this procedure can not be employed with  $(C_3H_5)NH_2$  to obtain analogous dendrons terminated in amine groups, because the presence of the C–Br bond gave rise to quaternization of the amine.

The C–Br bond of the focal point has been useful to introduce the allyl and ester wedges at the polyphenolic core  $1,3,5-(HO)_3C_6H_3$ , generating spherical dendrimers. However, the reaction time for the synthesis of the G3 allyl dendrimer has resulted too long (over 20 days) compared with G1 and G2 (2–6 days), whereas the reaction for the synthesis of G3 ester dendrimers was unsuccessful. The allyl dendrimers thus synthesized were used as precursors for amine dendrimers, after hydrosilylation with HSiMe<sub>2</sub>Cl, exchange the Cl atom by a H atom with LiAlH<sub>4</sub> and then hydrosilylation with (C<sub>3</sub>H<sub>5</sub>)NH<sub>2</sub>. However, in this last case, this method gave low yield for the G3 dendrimer.

Ester dendrimers could be also obtained by adding the acrylate  $C_2H_3CO_2Me$  to the amine dendrimers or from the SiH dendrimers by hydrosilylation with  $(C_3H_5)N(C_2H_4CO_2Me)_2$ , being the ester moiety unaffected. The later procedure clearly shortens synthetic times of ester derivatives with respect to the synthesis from amines, requiring smoother conditions than hydrosilylation of primary amines and also giving higher overall yields.

### 4. Experimental section

### 4.1. General considerations

All reactions were carried out under inert atmosphere and solvents were purified from appropriate drving agents. NMR spectra were recorded on a Varian Unity VXR-300 (300.13 (<sup>1</sup>H) and 75 (<sup>13</sup>C) MHz) or on a Bruker AV400 (400.13 (1H) and 79.49 (<sup>29</sup>Si) MHz). Chemical shifts ( $\delta$ ) are given in parts per million. <sup>1</sup>H and <sup>13</sup>C resonances were measured relative to solvent peaks considering TMS=0 ppm, meanwhile <sup>29</sup>Si resonance were measured relative to external TMS. When necessary, assignment of resonances was done from HSQC, HMBC, COSY, TOCSY, and NOESY NMR experiments. Elemental analyses were performed on a Perkin-Elmer 240C. Mass Spectra were obtained from an Agilent 6210 (ESI) and a Bruker Ultraflex III (MALDI-TOF). GPC analyses were carried out in a Varian HPLC with Plgel Mixed-D (300×7.5 mm) columns from Polymer Laboratories and a GPC PI-ELS 1000 detector from Polymer Laboratories. Compounds 4-Br-butene, Karstedt's Pt catalyst, MgBr (C<sub>3</sub>H<sub>5</sub>), LiAlH<sub>4</sub>, (C<sub>3</sub>H<sub>5</sub>)NH<sub>2</sub> and C<sub>2</sub>H<sub>3</sub>CO<sub>2</sub>Me (Aldrich), HSiCl<sub>2</sub>Me, and HSiClMe<sub>2</sub> (ABCR) were obtained from commercial sources.

### 4.2. Synthesis of compounds

4.2.1.  $(C_3H_5)N(C_2H_4CO_2Me)$ .  $(C_3H_5)NH_2$  (0.76 mL, 0.017 mol) and  $C_2H_3CO_2Me$  (3.30 mL, 0.040 mol) were stirred in MeOH (5 mL) at 60 °C for 20 h. Afterward, volatiles were removed under vacuum and  $(C_3H_5)N(C_2H_4CO_2Me)$  (2.99 g, 98%,) was obtained as a colorless liquid. Anal. Calcd for  $C_{11}H_{19}NO_4$  (229.27): C, 57.62; H, 8.35; N, 6.11; Obt.: C, 57.69; H, 8.25; N, 6.05.

<sup>1</sup>H NMR (CDCl<sub>3</sub>): 2.46 (t, 4H, J=7.2 Hz, NCH<sub>2</sub>CH<sub>2</sub>), 2.79 (t, 4H, J=7.2 Hz, CH<sub>2</sub>CO<sub>2</sub>Me), 3.10 (d, 2H, J=6.6 Hz, CHCH<sub>2</sub>N), 3.67 (s, 6H, CO<sub>2</sub>Me), 5.15 (m, 2H, CH<sub>2</sub>=CH), 5.80 (m, 2H, CH<sub>2</sub>=CH); <sup>13</sup>C NMR {<sup>1</sup>H} (CDCl<sub>3</sub>): 32.3 (CH<sub>2</sub>CO), 48.7 (CH<sub>2</sub>N), 51.3 (OMe), 56.7 (CHCH<sub>2</sub>N), 117.2 (CH<sub>2</sub>=CH), 135.2 (CH<sub>2</sub>=H), 172.7 (CO).

4.2.2.  $BrG_1(SiCl_2)$  (1). HSiMeCl<sub>2</sub> (7.67 g, 0.067 mol) was added to a cooled solution of 4-Br-1-butene (4.50 g, 0.033 mol) in hexane (3 mL) in the presence of Karstedt's catalyst (3% mol) and stirred overnight at 40 °C. Afterward, volatiles were removed under vacuum, hexane was added (10 mL) and the solution was filtered through active carbon. Removal of volatiles under vacuum (caution: compound 1 is slightly volatile) gave 1 as a colorless liquid (7.76 g, 94%) (compound 1 is moisture sensitive and has to be stored under inert atmosphere).

<sup>1</sup>H NMR (CDCl<sub>3</sub>): 0.77 (s, 3H, *MeSiCl*<sub>2</sub>), 1.11 (m, 2H, *CH*<sub>2</sub>Si), 1.65 (m, 2H, *CH*<sub>2</sub>CH<sub>2</sub>Si), 1.93 (m, 2H, BrCH<sub>2</sub>CH<sub>2</sub>), 3.41 (t, *J*=6.6 Hz, 2H, BrCH<sub>2</sub>); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>): 5.1 (*MeSiCl*<sub>2</sub>), 20.6 (*CH*<sub>2</sub>CH<sub>2</sub>Si), 21.1 (CH<sub>2</sub>CH<sub>2</sub>Si), 32.8 (BrCH<sub>2</sub>CH<sub>2</sub>), 34.9 (BrCH<sub>2</sub>CH<sub>2</sub>); <sup>29</sup>Si NMR (CDCl<sub>3</sub>): 32.3 (MeSiCl<sub>2</sub>). Anal. Calcd for C<sub>5</sub>H<sub>11</sub>BrCl<sub>2</sub>Si (250.04): C, 24.02; H, 4.43; Obt.: C, 24.23; H, 4.61.

4.2.3.  $BrG_1(C_3H_5)_2$  (**2**). BrMg(C<sub>3</sub>H<sub>5</sub>) (0.061 mol) was slowly added to a cooled Et<sub>2</sub>O solution (30 mL) of **1** (7.00 g, 0.028 mol) and stirred overnight at room temperature. Afterward, a water solution of NH<sub>4</sub>Cl was added (12%, 50 mL), the organic phase was separated and the aqueous phase was extracted twice with Et<sub>2</sub>O. The organic phase was washed with brine, dried over MgSO<sub>4</sub>, and SiO<sub>2</sub>. The solution was filtered through active carbon and the volatiles were removed under vacuum, yielding **2** as a colorless liquid (5.85 g, 80%).

<sup>1</sup>H NMR (CDCl<sub>3</sub>): -0.02 (s, 3H, *Me*Si(CH<sub>2</sub>CHCH<sub>2</sub>)<sub>2</sub>), 0.53 (m, 2H, CH<sub>2</sub>Si), 1.44 (m, 2H, CH<sub>2</sub>CH<sub>2</sub>Si), 1.54 (d, *J*=8.5 Hz, 4H, SiCH<sub>2</sub>CH), 1.85 (m, 2H, BrCH<sub>2</sub>CH<sub>2</sub>), 3.40 (t, *J*=6.6 Hz, 2H, BrCH<sub>2</sub>), 4.84 (m, 4H, CH=CH<sub>2</sub>), 5.74 (m, 2H, CH=CH<sub>2</sub>); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>): -5.9 (*Me*Si), 12.0 (SiCH<sub>2</sub>), 21.2 (CH<sub>2</sub>CH=CH<sub>2</sub>), 22.1 (CH<sub>2</sub>), 33.5 (BrCH<sub>2</sub>), 36.2 (BrCH<sub>2</sub>CH<sub>2</sub>), 113.3 (CH=CH<sub>2</sub>), 134.5 (CH=CH<sub>2</sub>); <sup>29</sup>Si NMR (CDCl<sub>3</sub>):

0.99 (MeSi). Anal. Calcd C<sub>11</sub>H<sub>21</sub>BrSi (261.27 g/mol): C, 50.57; H, 8.10; Exp.: C, 50.41; H, 7.93.

4.2.4.  $BrG_2(SiCl_2)_2$  (**3**). Following the procedure described for compound **1**, compound **3** was obtained as a colorless liquid (7.60 g, 94%) from **2** (4.30 g, 0.016 mol) and HSiMeCl<sub>2</sub> (7.58 g, 0.066 mol).

<sup>1</sup>H NMR (CDCl<sub>3</sub>): -0.03 (s, 3H, *Me*Si), 0.53 (m, 2H, SiCH<sub>2</sub>), 0.66 (m, 4H, SiCH<sub>2</sub>), 0.75 (s, 6H, *Me*SiCl<sub>2</sub>), 1.19 (m, 4H, CH<sub>2</sub>SiCl<sub>2</sub>), 1.50 (m, 6H, CH<sub>2</sub>), 1.85 (m, 2H, BrCH<sub>2</sub>CH<sub>2</sub>), 3.40 (t, *J*=6.6 Hz, 2H, BrCH<sub>2</sub>); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>): -5.1 (*Me*Si), 5.1 (*Me*SiCl<sub>2</sub>), 12.5 (SiCH<sub>2</sub>), 17.3 (CH<sub>2</sub>), 17.9 (CH<sub>2</sub>), 22.3 (BrCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 25.9 (CH<sub>2</sub>SiCl<sub>2</sub>), 33.7 (BrCH<sub>2</sub>), 36.4 (BrCH<sub>2</sub>CH<sub>2</sub>); <sup>29</sup>Si NMR (CDCl<sub>3</sub>): 2.3 (MeSi), 32.1 (MeSiCl<sub>2</sub>).

4.2.5.  $BrG_2(C_3H_5)_4$  (**4**). Following the procedure described for compound **2**, compound **4** was obtained as a colorless liquid (5.10 g, 78%) from **3** (6.25 g, 0.013 mol) and  $BrMg(C_3H_5)$  (0.055 mol).

<sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  –0.08 (s, 3H, MeSi), –0.04 (s, 6H, MeSi), 0.56 (m, 10H, SiCH<sub>2</sub>), 1.25 (m, 6H, CH<sub>2</sub>), 1.52 (d, *J*=8.4 Hz, 8H, CH<sub>2</sub>CH=CH<sub>2</sub>), 1.84 (m, 2H, BrCH<sub>2</sub>CH<sub>2</sub>), 3.40 (t, *J*=6.6 Hz, 2H, BrCH<sub>2</sub>), 4.84 (m, 8H, CH=CH<sub>2</sub>), 5.74 (m, 4H, CH=CH<sub>2</sub>); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>):  $\delta$  –5.7 (MeSi), –5.1 (MeSi), 12.9 (SiCH<sub>2</sub>), 17.9, 18.2y 18.6 (CH<sub>2</sub>), 21.4 (CH<sub>2</sub>CH=CH<sub>2</sub>), 22.5 (BrCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 33.6 (BrCH<sub>2</sub>), 36.3 (BrCH<sub>2</sub>CH<sub>2</sub>), 113.0 (CH=CH<sub>2</sub>), 134.8 (CH=CH<sub>2</sub>); <sup>29</sup>Si NMR (CDCl<sub>3</sub>):  $\delta$  0.1 (MeSi), 1.8 (MeSi). Anal. Calcd C<sub>25</sub>H<sub>49</sub>BrSi<sub>3</sub> (513.82 g/mol): C, 58.44; H, 9.61; Exp.: C, 58.11; H, 9.54.

4.2.6.  $BrG_3(SiCl_2)_4$  (5). Following the procedure described for compound **1**, compound **5** was obtained as a colorless liquid (4.45 g, 94%) from **4** (2.50 g, 4.86 mmol) and HSiMeCl<sub>2</sub> (3.80 g, 0.033 mol).

<sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  –0.07 (s, 3H, MeSi), –0.04 (s, 6H, MeSi), 0.58 (m, 18H, SiCH<sub>2</sub>), 0.75 (s, 12H, MeSiCl<sub>2</sub>), 0.87 (m, 8H, CH<sub>2</sub>), 1.16 (m, 8H, CH<sub>2</sub>SiCl<sub>2</sub>), 1.52 (m, 6H, CH<sub>2</sub>), 1.85 (m, 2H, BrCH<sub>2</sub>CH<sub>2</sub>), 3.40 (t, J=6.6 Hz, 2H, BrCH<sub>2</sub>); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>):  $\delta$  –5.2 (MeSi), 5.5 (MeSiCl<sub>2</sub>), 12.9 (SiCH<sub>2</sub>), 17.3y 17.5 (CH<sub>2</sub>), 18.4, 18.6y 18.7 (CH<sub>2</sub>), 22.6 (BrCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 25.9 (CH<sub>2</sub>SiCl<sub>2</sub>), 33.6 (BrCH<sub>2</sub>), 36.3 (BrCH<sub>2</sub>CH<sub>2</sub>); <sup>29</sup>Si NMR (CDCl<sub>3</sub>):  $\delta$  1.4 (MeSi), 1.8 (MeSi), 32.1 (MeSiCl<sub>2</sub>).

4.2.7.  $BrG_3(C_3H_5)_8$  (**6**). Following the procedure described for compound **2**, compound **6** was obtained as a colorless liquid (2.62 g, 76%) from **5** (3.30 g, 3.39 mmol) and  $BrMg(C_3H_5)$  (3.45 mmol).

<sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  –0.10 (s, 3H, *Me*Si), –0.08 (s, 6H, *Me*Si), –0.04 (s, 12H, *Me*Si), 055 (m, 26H, SiCH<sub>2</sub>), 1.31 (m, 16H, CH<sub>2</sub>), 1.52 (d, *J*=8.4 Hz, 16H, CH<sub>2</sub>CH=CH<sub>2</sub>), 1.84 (m, 2H, BrCH<sub>2</sub>CH<sub>2</sub>), 3.40 (t, *J*=6.6 Hz, 2H, BrCH<sub>2</sub>), 4.84 (m, 16H, CH=CH<sub>2</sub>), 5.73 (m, 8H, CH=CH<sub>2</sub>); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>):  $\delta$  –5.7 (*Me*Si), –5.1 (*Me*Si), –4.9 (*Me*Si), 13.0 (SiCH<sub>2</sub>), 17.9, 18.3, 18.5, 18.8y 18.9 (CH<sub>2</sub>), 21.5 (CH<sub>2</sub>CH=CH<sub>2</sub>), 22.6 (BrCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 33.6 (BrCH<sub>2</sub>), 36.4 (BrCH<sub>2</sub>CH<sub>2</sub>), 113.1 (CH=CH<sub>2</sub>), 134.9 (CH=CH<sub>2</sub>); <sup>29</sup>Si NMR (CDCl<sub>3</sub>):  $\delta$  0.1 (MeSi), 0.9 (MeSi), 1.8(MeSi). Anal. Calcd C<sub>53</sub>H<sub>105</sub>BrSi<sub>7</sub> (1018.90 g/mol): C, 62.48; H, 10.39; Exp.: C, 62.22; H, 10.31.

4.2.8.  $BrG_1(SiCl)_2$  (**7**). Following the procedure described for compound **1** but heating at 60 °C, compound **7** was obtained as a colorless liquid (4.96 g, 96%) from the reaction of **2** (3.00 g, 0.011 mol) and HSiMe<sub>2</sub>Cl (4.35 g, 0.046 mol).

<sup>1</sup>H NMR (CDCl<sub>3</sub>): -0.05 (s, 3H, MeSi), 0.38 (s, 12H, Me<sub>2</sub>SiCl), 0.52 (m, 2H, SiCH<sub>2</sub>), 0.58 (m, 4H, SiCH<sub>2</sub>), 0.88 (m, 4H, CH<sub>2</sub>SiCl), 1.42 (m, 6H, CH<sub>2</sub>), 1.85 (m, 2H, BrCH<sub>2</sub>CH<sub>2</sub>), 3.40 (t, *J*=6.6 Hz, 2H, BrCH<sub>2</sub>); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>): -5.2 (MeSi), 1.9 (Me<sub>2</sub>Si), 12.8 (SiCH<sub>2</sub>), 17.7 (CH<sub>2</sub>), 17.9 (CH<sub>2</sub>), 22.4 (BrCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 23.5 (CH<sub>2</sub>SiCl), 33.6 (BrCH<sub>2</sub>), 36.3 (BrCH<sub>2</sub>CH<sub>2</sub>); <sup>29</sup>Si NMR (CDCl<sub>3</sub>): 2.1 (MeSi), 31.1 (Me<sub>2</sub>SiCl).

4.2.9.  $BrG_1(SiH)_2$  (**8**). An Et<sub>2</sub>O solution (40 mL) of **7** (2.00 g, 4.44 mmol) was slowly added to an Et<sub>2</sub>O solution (20 mL) of LiAlH<sub>4</sub> (7.76 mmol) at 0 °C and stirred overnight at room temperature. Afterward, the mixture was added over a saturated water solution

of Na<sub>2</sub>SO<sub>4</sub> (50 mL) at 0 °C, the organic phase was separated and the aqueous phase was extracted twice with Et<sub>2</sub>O. The organic phase was dried over MgSO<sub>4</sub>, and SiO<sub>2</sub>, the solution was filtered and the volatiles were removed under vacuum, yielding **8** as colorless oil (1.44 g, 85%).

<sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  –0.08 (s, 3H, *Me*Si), 0.04 (d, *J*=4.2 Hz, 12H, *Me*<sub>2</sub>SiH), 0.52 (m, 2H, SiC*H*<sub>2</sub>), 0.58 (m, 8H, SiC*H*<sub>2</sub>), 1.38 (m, 6H, *CH*<sub>2</sub>), 1.85 (m, 2H, BrCH<sub>2</sub>CH<sub>2</sub>), 3.40 (t, *J*=6.6 Hz, 2H, BrCH<sub>2</sub>), 3.82 (m, 2H, SiH); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>):  $\delta$  –5.1 (*Me*Si), –4.3 (*Me*<sub>2</sub>SiH), 12.9 (SiCH<sub>2</sub>), 17.9 (CH<sub>2</sub>), 18.8y 19.0 (CH<sub>2</sub>), 22.5 (BrCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 33.7 (BrCH<sub>2</sub>), 36.4 (BrCH<sub>2</sub>CH<sub>2</sub>); <sup>29</sup>Si NMR (CDCl<sub>3</sub>):  $\delta$  –14.6 (Me<sub>2</sub>SiH), 2.1 (MeSi). Anal. Calcd C<sub>15</sub>H<sub>37</sub>BrSi<sub>3</sub> (381.61 g/mol): C, 47.21; H, 9.77; Obt.: C, 47.59; H, 9.53.

4.2.10.  $BrG_1(C_2H_4CO_2Me)_4$  (**9**).  $C_3H_5N(C_2H_4CO_2Me)_2$  (1.23 g, 5.26 mmol) was added to a hexane solution (5 mL) of **8** (1.00 g, 2.62 mmol) in the presence of Karstedt's catalyst (3% mol) and stirred overnight at room temperature. Afterward, hexane (10 mL) was added, the solution was filtered through active carbon and the volatiles were removed under vacuum. Compound **9** was purified by Gel Permeation Chromatography, obtaining **9** as colorless oil (2.04 g, 92%).

<sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  –0.10 (s, 3H, *M*eSi), –0.08 (s, 12H, *M*e<sub>2</sub>Si), 0.33 (m, 4H, SiCH<sub>2</sub>), 0.52 (m, 10H, SiCH<sub>2</sub>), 1.27 (m, 4H, CH<sub>2</sub>), 1.35 (m, 6H, CH<sub>2</sub>), 1.83 (m, 2H, BrCH<sub>2</sub>CH<sub>2</sub>), 2.33 (m, 4H, CH<sub>2</sub>N), 2.41 (t, *J*=7.3 Hz, 8H, CH<sub>2</sub>CN), 2.74 (t, *J*=7.3 Hz, 8H, CH<sub>2</sub>CO), 3.39 (t, *J*=6.6 Hz, 2H, BrCH<sub>2</sub>), 3.61 (s, 12H, OMe); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>):  $\delta$  –5.1 (*M*eSi), –3.3 (*M*e<sub>2</sub>Si), 12.8 (SiCH<sub>2</sub>), 12.9 (SiCH<sub>2</sub>), 18.4 (CH<sub>2</sub>), 18.6y 20.1 (CH<sub>2</sub>), 21.5 (CH<sub>2</sub>CH<sub>2</sub>N), 22.5 (BrCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 32.5 (CH<sub>2</sub>CO), 33.7 (BrCH<sub>2</sub>), 36.4 (BrCH<sub>2</sub>CH<sub>2</sub>), 49.2 (CH<sub>2</sub>N), 51.6 (OMe), 57.5 (CH<sub>2</sub>N), 173.1 (CO); <sup>29</sup>Si NMR (CDCl<sub>3</sub>):  $\delta$  1.0 (Me<sub>2</sub>Si), 2.1 (MeSi). MS [M+H]<sup>+</sup>: 839.41. Anal. Calcd C<sub>37</sub>H<sub>75</sub>BrN<sub>2</sub>O<sub>8</sub>Si<sub>3</sub> (840.16 g/mol): C, 52.89; H, 9.00; Obt.: C, 52.29; H, 8.63.

4.2.11.  $BrG_2(SiCl)_4$  (**10**). Following the procedure described for compound **7**, compound **10** was obtained as a colorless oil (4.08 g, 94%) from the reaction of **4** (2.50 g, 4.86 mmol) and HSiMe<sub>2</sub>Cl (3.31 g, 0.035 mol).

<sup>1</sup>H NMR (CDCl<sub>3</sub>): -0.08 (s, 3H, *MeSi*), -0.07 (s, 6H, *MeSi*), 0.38 (s, 24H, *Me*<sub>2</sub>SiCl), 0.54 (m, 18H, SiCH<sub>2</sub>), 0.86 (m, 8H, CH<sub>2</sub>SiCl), 1.28 (m, 4H, CH<sub>2</sub>), 1.42 (m, 10H, CH<sub>2</sub>), 1.85 (m, 2H, BrCH<sub>2</sub>CH<sub>2</sub>), 3.40 (t, *J*=6.6 Hz, 2H, BrCH<sub>2</sub>); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>): -5.1 (2 *MeSi*), 1.8 (*Me*<sub>2</sub>SiCl), 12.9 (SiCH<sub>2</sub>), 17.7, 18.1, 18.4, 18.7 (CH<sub>2</sub>), 22.5 (BrCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 23.5 (CH<sub>2</sub>SiCl), 33.7 (BrCH<sub>2</sub>), 36.3 (BrCH<sub>2</sub>CH<sub>2</sub>); <sup>29</sup>Si NMR (CDCl<sub>3</sub>): 1.0 (MeSi), 2.0 (MeSi), 31.2 (Me<sub>2</sub>SiCl).

4.2.12.  $BrG_2(SiH)_4$  (**11**). Following the procedure described for compound **8**, compound **11** was obtained as a colorless oil (2.18 g, 82%) from the reaction of **10** (3.15 g, 3.53 mmol) and LiAlH<sub>4</sub> (10.60 mmol).

<sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  –0.10 (s, 6H, *Me*Si), –0.08 (s, 3H, *Me*Si), 0.04 (d, *J*=4.2 Hz, 12H, *Me*<sub>2</sub>SiH), 0.54 (m, 26H, SiCH<sub>2</sub>), 1.35 (m, 14H, CH<sub>2</sub>), 1.85 (m, 2H, BrCH<sub>2</sub>CH<sub>2</sub>), 3.40 (t, *J*=6.6 Hz, 2H, BrCH<sub>2</sub>), 3.82 (m, 4H, SiH); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>):  $\delta$  –5.0 (*Me*Si), –4.38 (*Me*<sub>2</sub>SiH), 13.0 (SiCH<sub>2</sub>), 18.2, 18.5, 18.7, 18.8, 19.0 (CH<sub>2</sub>), 22.5 (BrCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 33.6 (BrCH<sub>2</sub>), 36.4 (BrCH<sub>2</sub>CH<sub>2</sub>); <sup>29</sup>Si NMR (CDCl<sub>3</sub>):  $\delta$  –14.1 (Me<sub>2</sub>SiH), 1.0 (MeSi), 1.8 (MeSi). Anal. Calcd C<sub>33</sub>H<sub>81</sub>BrSi<sub>7</sub> (754.50 g/mol): C, 52.53; H, 10.82; Obt.: C, 52.80; H, 10.45.

4.2.13.  $BrG_2(C_2H_4CO_2Me)_8$  (**12**). Following the procedure described for compound **9**, compound **12** was obtained as a colorless oil (0.60 g, 91%) from the reaction of **11** (0.30 g, 0.40 mmol) and C<sub>3</sub>H<sub>5</sub>N (C<sub>2</sub>H<sub>4</sub>CO<sub>2</sub>Me)<sub>2</sub> (0.40 g, 1.75 mmol).

<sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  –0.10 (s, 6H, MeSi), –0.08 (s, 3H, MeSi), –0.07 (s, 24H, Me<sub>2</sub>Si), 0.37 (m, 8H, SiCH<sub>2</sub>), 0.52 (m, 26H, SiCH<sub>2</sub>), 1.33 (m, 22H, CH<sub>2</sub>), 1.83 (m, 2H, BrCH<sub>2</sub>CH<sub>2</sub>), 2.33 (m, 8H, CH<sub>2</sub>N), 2.41 (t, J=7.3 Hz, 16H, CH<sub>2</sub>N), 2.74 (t, J=7.3 Hz, 16H, CH<sub>2</sub>CO), 3.39 (t,

*J*=6.6 Hz, 2H, BrC*H*<sub>2</sub>), 3.61 (s, 24H, O*Me*); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>):  $\delta$  −5.1 (*M*eSi), −4.9 (*M*eSi), −3.3 (*M*e<sub>2</sub>Si), 12.9 (SiCH<sub>2</sub>), 13.0 (SiCH<sub>2</sub>), 18.4, 18.5, 18.8, 18.9, 20.1 (CH<sub>2</sub>), 21.6 (CH<sub>2</sub>CH<sub>2</sub>N), 22.5 (BrCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 32.6 (CH<sub>2</sub>CO), 33.5 (BrCH<sub>2</sub>), 36.4 (BrCH<sub>2</sub>CH<sub>2</sub>), 49.3 (CH<sub>2</sub>N), 51.5 (O*Me*), 57.6 (CH<sub>2</sub>N), 173.0 (CO); <sup>29</sup>Si NMR (CDCl<sub>3</sub>):  $\delta$  0.87 (MeSi), 1.7 (MeSi), 1.9 (Me<sub>2</sub>Si). MS [M+H]<sup>+</sup>: 1669.92. Anal. Calcd C<sub>77</sub>H<sub>157</sub>BrN<sub>4</sub>O<sub>16</sub>Si<sub>7</sub> (1671.59 g/mol): C, 55.33; H, 9.47; N, 3.35; Obt.: C, 55.98; H, 9.60; N, 3.28.

4.2.14.  $BrG_3(SiCl)_8$  (**13**). Following the procedure described for compound **7**, compound **13** was obtained as a colorless oil (4.29 g, 94%) from the reaction of **6** (2.62 g, 2.57 mmol) and HSiMe<sub>2</sub>Cl (3.31 g, 0.035 mol).

<sup>1</sup>H NMR (CDCl<sub>3</sub>): -0.07 (s.a., 21H, *Me*Si), 0.38 (s, 48H, *Me*<sub>2</sub>SiCl), 0.50 (m, 26H, SiC*H*<sub>2</sub>), 0.85 (m, 16H, C*H*<sub>2</sub>SiCl), 1.24 (m, 12H, C*H*<sub>2</sub>), 1.40 (m, 18H, C*H*<sub>2</sub>), 1.82 (m, 2H, BrCH<sub>2</sub>CH<sub>2</sub>), 3.40 (t, *J*=6.6 Hz, 2H, BrCH<sub>2</sub>); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>): -5.0y -4.9 (*Me*Si), 1.8 (*Me*<sub>2</sub>SiCl), 13.0 (SiCH<sub>2</sub>), 17.7, 18.1, 18.5, 18.8 and 18.9 (SiCH<sub>2</sub>), 22.6 (BrCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 23.5 (CH<sub>2</sub>SiCl), 33.6 (BrCH<sub>2</sub>), 36.3 (BrCH<sub>2</sub>CH<sub>2</sub>); <sup>29</sup>Si NMR (CDCl<sub>3</sub>): 0.9 and 1.2 (MeSi), 31.2(Me<sub>2</sub>SiCl).

4.2.15.  $BrG_3(SiH)_8$  (**14**). Following the procedure described for compound **8**, compound **14** was obtained as a colorless oil (1.32 g, 78%) from the reaction of **13** (2.00 g, 1.13 mmol) and LiAlH<sub>4</sub> (6.75 mmol).

<sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  –0.10 (s, 21H, *Me*Si), 0.04 (d, *J*=4.2 Hz, 48H, *Me*<sub>2</sub>SiH), 0.58 (m, 58H, SiCH<sub>2</sub>), 1.31 (m, 30H, CH<sub>2</sub>), 1.82 (m, 2H, BrCH<sub>2</sub>CH<sub>2</sub>), 3.40 (t, *J*=6.6 Hz, 2H, BrCH<sub>2</sub>), 3.83 (m, 8H, SiH); <sup>13</sup>C NMR {<sup>1</sup>H} (CDCl<sub>3</sub>):  $\delta$  –5.0 to –4.8 (*Me*Si), –4.3 (*Me*<sub>2</sub>SiH), 13.0 (SiCH<sub>2</sub>), 18.2–19.0 (CH<sub>2</sub>), 22.6 (BrCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 33.5 (BrCH<sub>2</sub>), 36.5 (BrCH<sub>2</sub>CH<sub>2</sub>); <sup>29</sup>Si NMR (CDCl<sub>3</sub>):  $\delta$  –14.6 (Me<sub>2</sub>SiH), 1.4 (MeSi). Anal. Calcd C<sub>69</sub>H<sub>169</sub>BrSi<sub>15</sub> (1500.27 g/mol): C, 55.24; H, 11.35; Obt.: C, 55.88; H, 11.73.

4.2.16.  $BrG_3(C_2H_4CO_2Me)_{16}$  (**15**). Following the procedure described for compound **9**, compound **15** was obtained as a colorless oil (0.98 g, 88%) from the reaction of **14** (0.50 g, 0.33 mol) and C<sub>3</sub>H<sub>5</sub>N (C<sub>2</sub>H<sub>4</sub>CO<sub>2</sub>Me)<sub>2</sub> (0.63 g, 0.34 mol).

<sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  –0.10 (s, 18H, *Me*Si), –0.06 (s, 51H, *Me*Si and *Me*<sub>2</sub>Si), 0.35 (m, 16H, SiCH<sub>2</sub>), 0.53 (m, 58H, SiCH<sub>2</sub>), 1.27 (m, 30H, CH<sub>2</sub>), 1.37 (m, 16H, CH<sub>2</sub>), 1.83 (m, 2H, BrCH<sub>2</sub>CH<sub>2</sub>), 2.37 (m, 16H, CH<sub>2</sub>N), 2.42 (t, *J*=7.3 Hz, 32H, CH<sub>2</sub>N), 2.75 (t, *J*=7.3 Hz, 32H, CH<sub>2</sub>CO), 3.40 (t, *J*=6.6 Hz, 2H, BrCH<sub>2</sub>), 3.64 (s, 48H, OMe); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>):  $\delta$  –5.0 (*Me*Si), –4.9 (*Me*Si), –3.3 (*Me*<sub>2</sub>Si), 12.7 (SiCH<sub>2</sub>), 12.8 (SiCH<sub>2</sub>), 18.4, 18.8, 19.0, 20.1 (CH<sub>2</sub>), 21.5 (CH<sub>2</sub>CH<sub>2</sub>N), 22.5 (BrCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 32.5 (CH<sub>2</sub>CO), 33.5 (BrCH<sub>2</sub>), 36.4 (BrCH<sub>2</sub>CH<sub>2</sub>), 49.2 (CH<sub>2</sub>N), 51.5 (OMe), 57.5 (CH<sub>2</sub>N), 1731 (CO); <sup>29</sup>Si NMR (CDCl<sub>3</sub>):  $\delta$  0.87 (MeSi), 1.7 (MeSi), 1.9 (Me<sub>2</sub>Si). MS [M+H]<sup>+</sup>: 3330.87. Anal. Calcd C<sub>157</sub>H<sub>321</sub>BrN<sub>8</sub>O<sub>32</sub>Si<sub>15</sub> (3334.45 g/mol): C, 56.55; H, 9.70; N, 3.36; Obt.: C, 56.79; H, 9.41; N, 3.28.

4.2.17.  $G_1O_3(C_3H_5)_6$  (**16**). 1,3,5-(HO)<sub>3</sub>C<sub>6</sub>H<sub>3</sub> (0.48 g, 3.82 mmol), **2** (3.00 g, 11.48 mmol), K<sub>2</sub>CO<sub>3</sub>(3.20 g, 23.00 mmol) and crown ether 18-C-6 (0.30 g, 1.14 mmol) were stirred in acetone (70 mL) at 90 °C into a sealed ampoule for 3 days under vacuum. Afterward, volatiles were removed under vacuum and a water solution of NH<sub>4</sub>Cl (12%, 50 mL) and Et<sub>2</sub>O were added. The organic phase was separated and the aqueous phase was extracted twice with Et<sub>2</sub>O. The organic phase was dried over MgSO<sub>4</sub>, and for extra 10 min also with SiO<sub>2</sub>. The solution was filtered and the volatiles were removed under vacuum, yielding **16** as colorless oil (2.02 g, 80%).

<sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  –0.02 (s, 9H, MeSi), 0.58 (m, 6H, CH<sub>2</sub>Si), 1.44 (m, 6H, OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 1.54 (d, *J*=8.5 Hz, 12H, CH<sub>2</sub>CH=CH<sub>2</sub>), 1.76 (m, 6H, OCH<sub>2</sub>CH<sub>2</sub>), 3.89 (t, *J*=6.4 Hz, 6H, OCH<sub>2</sub>), 4.84 (m, 12H, CH=CH<sub>2</sub>), 5.78 (m, 6H, CH=CH<sub>2</sub>), 6.04 (s, 3H, C<sub>6</sub>H<sub>3</sub>); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>):  $\delta$  –5.9 (MeSi), 12.7 (SiCH<sub>2</sub>), 20.1 (OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 21.3 (CH<sub>2</sub>CH=CH<sub>2</sub>),

32.9 (OCH<sub>2</sub>CH<sub>2</sub>), 67.4 (OCH<sub>2</sub>), 93.7 (C<sub>6</sub>H<sub>3</sub> (CH)), 113.1 (CH=CH<sub>2</sub>), 134.7 (CH=CH<sub>2</sub>), 160.9 (*i*-C<sub>6</sub>H<sub>3</sub>); <sup>29</sup>Si NMR (CDCl<sub>3</sub>):  $\delta$  0.8 (MeS*i*). MS [M+H]<sup>+</sup>: 667.44. Anal. Calcd C<sub>39</sub>H<sub>66</sub>O<sub>3</sub>Si<sub>3</sub> (667.20 g/mol): C, 70.21; H, 9.97; Obt.: C, 69.83; H, 9.22.

4.2.18.  $G_2O_3(C_3H_5)_{12}$  (**17**). Following the procedure described for compound **16**, compound **17** was obtained as a colorless oil (2.07 g, 76%) from the reaction of 1,3,5-(HO)<sub>3</sub>C<sub>6</sub>H<sub>3</sub> (0.24 g, 1.94 mmol), **4** (3.00 g, 5.84 mmol), K<sub>2</sub>CO<sub>3</sub> (1.62 g, 11.68 mmol), and 18-C-6 (0.15 g, 0.59 mmol) during 7 days.

<sup>1</sup>H NMR (CDCl<sub>3</sub>): δ –0.08 (s, 9H, *Me*Si), –0.04 (s, 18H, *Me*Si), 0.57 (m, 30H, SiCH<sub>2</sub>), 1.30 (m, 12H, CH<sub>2</sub>), 1.41 (m, 6H, OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 1.52 (d, *J*=7.9 Hz, 24H, CH<sub>2</sub>CH=CH<sub>2</sub>), 1.75 (m, 6H, OCH<sub>2</sub>CH<sub>2</sub>), 3.88 (t, *J*=6.3 Hz, 6H, OCH<sub>2</sub>), 4.84 (m, 24H, CH=CH<sub>2</sub>), 5.74 (m, 12H, CH=CH<sub>2</sub>), 6.04 (s, 3H, C<sub>6</sub>H<sub>3</sub>); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>): δ –5.7 (*Me*Si), –5.1 (*Me*Si), 13.8 (SiCH<sub>2</sub>), 17.9, 18.2y 18.6 (CH<sub>2</sub>), 20.6 (OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 21.5 (CH<sub>2</sub>CH=CH<sub>2</sub>), 33.3 (OCH<sub>2</sub>CH<sub>2</sub>), 67.6 (OCH<sub>2</sub>), 93.7 (C<sub>6</sub>H<sub>3</sub> (CH)), 113.1 (CH=CH<sub>2</sub>), 134.9 (CH=CH<sub>2</sub>), 160.9 (*i*-C<sub>6</sub>H<sub>3</sub>); <sup>29</sup>Si NMR (CDCl<sub>3</sub>): δ 0.1 (MeSi), 1.5 (MeSi). [M+Na]<sup>+</sup>: 1446.9. Anal. Calcd C<sub>81</sub>H<sub>150</sub>O<sub>3</sub>Si<sub>9</sub> (1424.83 g/mol): C 68.28; H 10.61; Obt.: C, 68.01; H, 10.31.

4.2.19.  $G_3O_3(C_3H_5)_{24}$  (**18**). Following the procedure described for compound **16**, compound **17** was obtained as a colorless oil (1.00 g, 68%) from the reaction of 1,3,5-(HO)<sub>3</sub>C<sub>6</sub>H<sub>3</sub> (0.061 g, 0.49 mmol), **6** (1.50 g, 1.47 mmol), K<sub>2</sub>CO<sub>3</sub> (0.41 g, 2.94 mmol), and 18-C-6 (0.039 g, 0.14 mmol) during 20 days.

<sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  –0.10 (s, 18H, *MeS*i), –0.07 (s, 9H, *MeS*i), –0.04 (s, 36H, *MeS*i), 0.55 (m, 78H, SiCH<sub>2</sub>), 1.31 (m, 42H, CH<sub>2</sub>), 1.52 (d, *J*=7.9 Hz, 48H, CH<sub>2</sub>CHCH<sub>2</sub>), 1.75 (m, 6H, OCH<sub>2</sub>CH<sub>2</sub>), 3.88 (t, *J*=6.3 Hz, 6H, OCH<sub>2</sub>), 4.84 (m, 48H, CH=CH<sub>2</sub>), 5.74 (m, 24H, CH=CH<sub>2</sub>), 6.04 (s, 3H, C<sub>6</sub>H<sub>3</sub>); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>):  $\delta$  –5.7 (*MeS*i), –5.0 (*MeS*i), 13.9 (CH<sub>2</sub>Si), 17.9, 18.2, 18.5, 18.8, 18.9 (CH<sub>2</sub>), 20.6 (OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 21.5 (CH<sub>2</sub>CH=CH<sub>2</sub>), 33.3 (OCH<sub>2</sub>CH<sub>2</sub>), 67.7 (OCH<sub>2</sub>), 93.6 (C<sub>6</sub>H<sub>3</sub> (CH)), 113.0 (CH=CH<sub>2</sub>), 134.9 (CH=CH<sub>2</sub>), 160.9 (*i*-C<sub>6</sub>H<sub>3</sub>); <sup>29</sup>Si NMR (CDCl<sub>3</sub>):  $\delta$  0.1 (MeSi), 0.9 (MeSi), 1.7 (MeSi). [M+Na]<sup>+</sup>: 2962.9. Anal. Calcd C<sub>165</sub>H<sub>318</sub>O<sub>3</sub>Si<sub>21</sub> (2940.08 g/mol): C, 67.41; H, 10.90; Obt.: C, 66.56; H, 10.87.

4.2.20. G<sub>1</sub>O<sub>3</sub>(C<sub>2</sub>H<sub>4</sub>CO<sub>2</sub>Me)<sub>12</sub> (19). Method (A): Following the procedure described for compound 16, compound 19 was obtained as a colorless oil (0.32 g, 61%) from the reaction of  $1,3,5-(HO)_3C_6H_3$ (0.027 g, 0.21 mmol), 9 (0.55 g, 0.65 mmol), K<sub>2</sub>CO<sub>3</sub> (0.18 g, 1.30 mmol), and 18-C-6 (0.017 g, 0.06 mmol) during 4 days in acetone (15 mL). Method (B): Reaction of 25 (1.00 g, 0.95 mmol) and C<sub>3</sub>H<sub>5</sub>N(C<sub>2</sub>H<sub>4</sub>CO<sub>2</sub>Me)<sub>2</sub> (1.44 g, 6.08 mmol) in THF (5 mL) in the presence of Karstedt's catalyst (3% mol) was stirred overnight at 40 °C. Next, THF was added (15 mL), the solution was filtered through active carbon and the volatiles were removed under vacuum. The remaining oil was washed with cold hexane (10 mL) obtaining compound 19 as a pale yellow oil (2.14 g, 91%). Method (C): C<sub>2</sub>H<sub>3</sub>CO<sub>2</sub>Me (0.25 g, 2.85 mmol) was added to a solution of 28 (0.25 g, 0.18 mmol) in methanol (5 mL) and stirred at room temperature for 16 h. Afterward, the volatiles were removed under vacuum and the residue was washed with cold hexane (5 mL) yielding **19** as a yellowish oil (0.39 g, 90%).

<sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  –0.09 (s, 9H, *Me*Si), –0.07 (s, 36H, *Me*<sub>2</sub>Si), 0.40 (m, 12H, SiCH<sub>2</sub>), 0.53 (m, 30H, SiCH<sub>2</sub>), 1.27 (m, 12H, CH<sub>2</sub>), 1.36 (m, 18H, CH<sub>2</sub>), 1.75 (m, 6H, OCH<sub>2</sub>CH<sub>2</sub>), 2.39 (m, 12H, CH<sub>2</sub>N), 2.41 (t, *J*=7.3 Hz, 24H, CH<sub>2</sub>N), 2.74 (t, *J*=7.3 Hz, 24H, CH<sub>2</sub>CO), 3.64 (s, 36H, OMe), 3.87 (t, *J*=6.6 Hz, 6H, OCH<sub>2</sub>), 6.03 (s, 3H, C<sub>6</sub>H<sub>3</sub>); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>):  $\delta$  –5.1 (*Me*Si), –3.3 (*Me*<sub>2</sub>Si), 12.8 (SiCH<sub>2</sub>), 13.9 (SiCH<sub>2</sub>), 18.4, 18.69 20.1 (CH<sub>2</sub>), 20.5 (OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 21.5 (CH<sub>2</sub>CH<sub>2</sub>N, 32.5 (CH<sub>2</sub>CO)), 33.7 (OCH<sub>2</sub>CH<sub>2</sub>), 49.2 (CH<sub>2</sub>N), 51.6 (OMe), 57.5 (CH<sub>2</sub>N), 67.7 (OCH<sub>2</sub>), 93.6 (C<sub>6</sub>H<sub>3</sub> (CH)), 160.9 (*i*-C<sub>6</sub>H<sub>3</sub>), 173.1 (CO); <sup>29</sup>Si NMR (CDCl<sub>3</sub>):  $\delta$  1.6 (MeSi), 1.9 (Me<sub>2</sub>Si). [M+H]<sup>+</sup>: 2404.5. Anal. Calcd

C<sub>117</sub>H<sub>228</sub>N<sub>6</sub>O<sub>27</sub>Si<sub>9</sub> (2403.86 g/mol): C 58.46, H, 9.56, N, 3.50; Obt.: C, 58.09, H, 9.13, N, 3.02.

4.2.21.  $G_2O_3(C_2H_4CO_2Me)_{24}$  (**20**). Method (B): Compound **20** was obtained as a pale yellow oil (2.10 g, 88%) from the reaction of **26** (1.05 g, 0.48 mmol) and  $C_3H_5N(C_2H_4CO_2Me)_2$  (1.34 g, 5.94 mmol) as described for compound **19**. Method (C): Starting from  $C_2H_3CO_2Me$  (0.25 g, 2.92 mmol) and **29** (0.30 g, 0.11 mmol) compound **20** was isolated as a yellowish oil (0.46 g, 89%) following the procedure described for **19** (method C).

<sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  –0.10 (s, 27H, *Me*Si), –0.07 (s, 72H, *Me*<sub>2</sub>Si), 0.39 (m, 24H, SiCH<sub>2</sub>), 0.53 (m, 78H, SiCH<sub>2</sub>), 1.30 (m, 66H, CH<sub>2</sub>), 1.75 (m, 6H, OCH<sub>2</sub>CH<sub>2</sub>), 2.39 (m, 24H, CH<sub>2</sub>N), 2.41 (t, *J*=7.3 Hz, 48H, CH<sub>2</sub>N), 2.74 (t, *J*=7.3 Hz, 48H, CH<sub>2</sub>CO), 3.64 (s, 72H, OMe), 3.87 (t, *J*=6.6 Hz, 6H, OCH<sub>2</sub>), 6.03 (s, 3H, C<sub>6</sub>H<sub>3</sub>); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>):  $\delta$  –5.1 (*Me*Si), –3.3 (*Me*<sub>2</sub>Si), 12.8 (SiCH<sub>2</sub>), 13.9 (SiCH<sub>2</sub>), 18.4, 18.8, 19.0y 20.1, 20.5, 21.5 (CH<sub>2</sub>), 32.5 (NCH<sub>2</sub>), 33.7 (OCH<sub>2</sub>CH<sub>2</sub>), 49.2 (CH<sub>2</sub>CO), 51.2 (OMe), 57.5 (CH<sub>2</sub>N), 67.7 (OCH<sub>2</sub>), 93.6 (C<sub>6</sub>H<sub>3</sub> (CH)), 160.9 (*i*-C<sub>6</sub>H<sub>3</sub>), 173.1 (CO); <sup>29</sup>Si NMR (CDCl<sub>3</sub>):  $\delta$  0.9 (MeSi), 1.7 (MeSi), 1.9 (Me<sub>2</sub>Si). Anal. Calcd C<sub>237</sub>H<sub>474</sub>N<sub>12</sub>O<sub>51</sub>Si<sub>21</sub> (4898.14 g/mol): C, 58.11; H, 9.75; N, 3.43; Obt.: C, 57.89; H, 10.01; N, 3.63.

4.2.22.  $G_3O_3(C_2H_4CO_2Me)_{48}$  (21). Method (B): Following the procedure described for compound 19 (method B), compound 21 was obtained as a pale yellow oil (0.31 g, 88%) from the reaction of 26 (0.15 g, 0.037 mmol) and  $C_3H_5N(C_2H_4CO_2Me)_2$  (0.22 g, 0.93 mmol) at 40 °C Method (C): Reaction of  $C_2H_3CO_2Me$  (0.13 g, 1.44 mmol) and 30 (0.15 g, 0.026 mmol) yielded 21 as a yellowish oil (0.23 g, 86%) as described for 19 (method C).

<sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  –0.12 (s.a., 54H, *Me*Si), –0.07 (s, 144H, *Me*<sub>2</sub>Si), 0.38 (m, 48H, SiCH<sub>2</sub>), 0.52 (m, 174H, SiCH<sub>2</sub>), 1.26 (m, 84H, CH<sub>2</sub>), 1.38 (m, 54H, CH<sub>2</sub>), 1.75 (m, 6H, OCH<sub>2</sub>CH<sub>2</sub>), 2.45 (m, 144H, CH<sub>2</sub>N), 2.74 (s.a., 98H, CH<sub>2</sub>CO), 3.63 (s, 144H, OMe), 3.87 (s.a., 6H, OCH<sub>2</sub>), 6.00 (s, 3H, C<sub>6</sub>H<sub>3</sub>); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>):  $\delta$  –4.8 (*Me*Si), –3.3 (*Me*<sub>2</sub>Si), 12.8 (SiCH<sub>2</sub>), 14.1 (SiCH<sub>2</sub>), 18.4–20.5 (CH<sub>2</sub>), 32.3 (NCH<sub>2</sub>), 33.6 (OCH<sub>2</sub>CH<sub>2</sub>), 49.2 (CH<sub>2</sub>CO), 51.6 (OMe), 57.4 (CH<sub>2</sub>N), 67.8 (OCH<sub>2</sub>), 93.6 (C<sub>6</sub>H<sub>3</sub> (CH)), 160.9 (*i*-C<sub>6</sub>H<sub>3</sub>), 172.8 (CO); <sup>29</sup>Si NMR (CDCl<sub>3</sub>):  $\delta$  0.9, 1.8 (MeSi), 1.9 (Me<sub>2</sub>Si). Anal. Calcd C<sub>477</sub>H<sub>966</sub>N<sub>24</sub>O<sub>99</sub>Si<sub>45</sub> (9886.72 g/mol): C, 57.95; H, 9.85; N, 3.40; Obt.: C, 57.09; H, 10.10; N, 3.63.

4.2.23.  $G_1O_3(SiCl)_6$  (**22**). Following the procedure described for compound **7**, compound **22** was obtained as a colorless oil (1.77 g, 95%) from the reaction of **16** (1.01 g, 1.51 mmol) and HSiMe<sub>2</sub>Cl (1.46 g, 0.015 mol).

<sup>1</sup>H NMR (CDCl<sub>3</sub>): -0.05 (s, 9H, MeSi), 0.38 (s, 36H, Me<sub>2</sub>SiCl), 0.58 (m, 18H, SiCH<sub>2</sub>), 0.86 (m, 12H, CH<sub>2</sub>SiCl), 1.42 (m, 18H, CH<sub>2</sub>), 1.78 (m, 6H, OCH<sub>2</sub>CH<sub>2</sub>), 3.88 (t, *J*=6.6 Hz, 6H, OCH<sub>2</sub>), 6.04 (s, 3H, C<sub>6</sub>H<sub>3</sub>); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>): -5.1 (MeSi), 1.9 (Me<sub>2</sub>SiCl), 13.6 (SiCH<sub>2</sub>), 17.7 (CH<sub>2</sub>), 17.9 (CH<sub>2</sub>), 20.5 (OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 23.5 (CH<sub>2</sub>SiCl), 33.1 (OCH<sub>2</sub>CH<sub>2</sub>), 67.5 (OCH<sub>2</sub>), 93.7 (C<sub>6</sub>H<sub>3</sub> (CH)), 160.9 (*i*-C<sub>6</sub>H<sub>3</sub>); <sup>29</sup>Si NMR (CDCl<sub>3</sub>): 2.1 (MeSi), 31.1 (Me<sub>2</sub>SiCl).

4.2.24.  $G_2O_3(SiCl)_{12}$  (**23**). Following the procedure described for compound **7**, compound **23** was obtained as a pale yellow oil (3.41 g, 95%) from the reaction of **17** (2.00 g, 1.40 mmol) and HSi-Me<sub>2</sub>Cl (2.71 g, 0.029 mol).

<sup>1</sup>H NMR (CDCl<sub>3</sub>): -0.07 (s, 18H, *MeSi*), -0.01 (s, 9H, *MeSi*), 0.38 (s, 72H, *Me*<sub>2</sub>SiCl), 0.54 (m, 54H, SiCH<sub>2</sub>), 0.86 (m, 24H, CH<sub>2</sub>SiCl), 1.28 (m, 12H, CH<sub>2</sub>), 1.42 (m, 30H, CH<sub>2</sub>), 1.77 (m, 6H, OCH<sub>2</sub>CH<sub>2</sub>), 3.87 (t, *J*=6.6 Hz, 6H, OCH<sub>2</sub>), 6.04 (s, 3H, C<sub>6</sub>H<sub>3</sub>); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>): -5.0 (*MeSi*), -4.8 (*MeSi*), 1.9 (*Me*<sub>2</sub>SiCl), 13.9 (SiCH<sub>2</sub>), 17.7, 18.1 (CH<sub>2</sub>), 18.5, 18.7, 18.8 (CH<sub>2</sub>), 20.6 (OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 23.5 (CH<sub>2</sub>SiCl), 33.3 (OCH<sub>2</sub>CH<sub>2</sub>), 67.7 (OCH<sub>2</sub>), 93.7 (C<sub>6</sub>H<sub>3</sub> (CH)), 160.9 (*i*-C<sub>6</sub>H<sub>3</sub>); <sup>29</sup>Si NMR (CDCl<sub>3</sub>): 1.0 (MeSi), 2.0 (MeSi), 31.2 (Me<sub>2</sub>SiCl). 4.2.25.  $G_3O_3(SiCl)_{24}$  (**24**). Following the procedure described for compound **7**, compound **24** was obtained as a yellowish oil (4.21 g, 95%) from the reaction of **18** (2.50 g, 0.85 mmol) and HSiMe<sub>2</sub>Cl (3.28 g, 0.034 mol).

<sup>1</sup>H NMR (CDCl<sub>3</sub>): -0.09 (s, 27H, *Me*Si), -0.07 (s, 36H, *Me*Si), 0.38 (s, 144H, *Me*<sub>2</sub>SiCl), 0.54 (m, 126H, SiCH<sub>2</sub>), 0.86 (m, 48H, CH<sub>2</sub>SiCl), 1.25 (m, 36H, CH<sub>2</sub>), 1.42 (m, 54H, CH<sub>2</sub>), 1.77 (m, 6H, OCH<sub>2</sub>CH<sub>2</sub>), 3.87 (t, *J*=6.6 Hz, 6H, OCH<sub>2</sub>), 6.03 (s, 3H, C<sub>6</sub>H<sub>3</sub>); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>): -5.0, -4.8 (*Me*Si), 1.9 (*Me*<sub>2</sub>SiCl), 13.9 (CH<sub>2</sub>Si), 17.7, 18.1, 18.5, 18.8, 18.9, 19.1 (CH<sub>2</sub>), 20.6 (OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 23.5 (CH<sub>2</sub>SiCl), 33.4 (OCH<sub>2</sub>CH<sub>2</sub>), 67.7 (OCH<sub>2</sub>), 93.6 (C<sub>6</sub>H<sub>3</sub> (CH)), 160.9 (*i*-C<sub>6</sub>H<sub>3</sub>); <sup>29</sup>Si NMR (CDCl<sub>3</sub>): 1.0, 1.6 (MeSi), 31.1 (Me<sub>2</sub>SiCl).

4.2.26.  $G_1O_3(SiH)_6$  (**25**). Following the procedure described for compound **8**, compound **25** was obtained as a colorless oil (1.18 g, 80%) from the reaction of **22** (1.77 g, 1.43 mmol) and LiAlH<sub>4</sub> (6.45 mmol).

<sup>1</sup>H NMR (CDCl<sub>3</sub>): δ –0.08 (s, 9H, *Me*Si), 0.04 (d, *J*=4.2 Hz, 36H, *Me*<sub>2</sub>SiH), 0.55 (m, 18H, SiCH<sub>2</sub>), 0.63 (m, 12H, CH<sub>2</sub>SiH), 1.25 (m, 18H, CH<sub>2</sub>), 1.77 (m, 6H, OCH<sub>2</sub>CH<sub>2</sub>), 3.82 (m, 6H, SiH), 3.88 (t, *J*=6.6 Hz, 6H, OCH<sub>2</sub>), 6.04 (s, 3H, C<sub>6</sub>H<sub>3</sub>); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>): δ –5.1 (*Me*Si), –4.4 (*Me*<sub>2</sub>SiH), 13.7 (SiCH<sub>2</sub>), 18.0, 18.8y 18.9 (CH<sub>2</sub>), 20.5 (OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 33.2 (OCH<sub>2</sub>CH<sub>2</sub>), 67.6 (OCH<sub>2</sub>), 93.8 (C<sub>6</sub>H<sub>3</sub> (CH)), 161.0 (*i*-C<sub>6</sub>H<sub>3</sub>); <sup>29</sup>Si NMR (CDCl<sub>3</sub>): δ –14.0 (Me<sub>2</sub>SiH), 1.9 (MeSi). MS [M+H]<sup>+</sup>: 1027.68. Anal. Calcd C<sub>51</sub>H<sub>114</sub>O<sub>3</sub>Si<sub>9</sub> (1028.22 g/mol): C, 59.57; H, 11.18; Obt.: C, 59.89; H, 11.53.

4.2.27.  $G_2O_3(SiH)_{12}$  (**26**). Following the procedure described for compound **8**, compound **26** was obtained as a colorless oil (0.95 g, 79%) from the reaction of **23** (1.45 g, 0.57 mmol) and LiAlH<sub>4</sub> (5.10 mmol).

<sup>1</sup>H NMR (CDCl<sub>3</sub>): δ –0.10 (s, 18H, MeSi), –0.08 (s, 9H, MeSi), 0.03 (d, J=4.2 Hz, 72H, Me<sub>2</sub>SiH), 0.55 (m, 54H, SiCH<sub>2</sub>), 0.63 (m, 24H, CH<sub>2</sub>SiH), 1.35 (m, 42H, CH<sub>2</sub>), 1.77 (m, 6H, OCH<sub>2</sub>CH<sub>2</sub>), 3.82 (m, 12H, SiH), 3.88 (t, J=6.6 Hz, 6H, OCH<sub>2</sub>), 6.04 (s, 3H, C<sub>6</sub>H<sub>3</sub>); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>): δ –5.1 (MeSi), –5.0 (MeSi), –4.4 (Me<sub>2</sub>SiH), 13.9 (SiCH<sub>2</sub>), 18.2, 18.5, 18.8y 19.0 (CH<sub>2</sub>), 20.5 (OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 33.3 (OCH<sub>2</sub>CH<sub>2</sub>), 67.7 (OCH<sub>2</sub>), 93.7 (C<sub>6</sub>H<sub>3</sub>); (CH)), 160.9 (*i*-C<sub>6</sub>H<sub>3</sub>); <sup>29</sup>Si NMR (CDCl<sub>3</sub>): δ –14.2 (Me<sub>2</sub>SiH), 0.8 (MeSi), 1.9 (MeSi). [M+H]<sup>+</sup>: 2147.4. Anal. Calcd C<sub>105</sub>H<sub>246</sub>O<sub>3</sub>Si<sub>21</sub> (2146.87 g/ mol): C, 58.74; H, 11.55; Obt.: C, 58.29; H, 11.53.

4.2.28.  $G_3O_3(SiH)_{24}$  (**27**). Following the procedure described for compound **8**, compound **27** was obtained as a colorless oil (0.93 g, 74%) from the reaction of **24** (1.50 g, 0.29 mmol) and LiAlH<sub>4</sub> (5.00 mmol).

<sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  –0.10 (s.a., 54H, MeSi), 0.03 (d, *J*=4.2 Hz, 144H, *Me*<sub>2</sub>SiH), 0.58 (m, 174H, SiCH<sub>2</sub>), 1.35 (m, 90H, CH<sub>2</sub>), 1.77 (m, 6H, OCH<sub>2</sub>CH<sub>2</sub>), 3.82 (m, 30H, SiH y OCH<sub>2</sub>), 6.03 (s, 3H, C<sub>6</sub>H<sub>3</sub>); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>):  $\delta$  –5.0 (*Me*Si), –4.3 (*Me*<sub>2</sub>SiH), 13.9 (CH<sub>2</sub>Si), 18.2, 18.5, 18.8, 18.9 (CH<sub>2</sub>), 20.6 (OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 33.2 (OCH<sub>2</sub>CH<sub>2</sub>), 67.7 (OCH<sub>2</sub>), 94.5 (*C*<sub>6</sub>H<sub>3</sub> (CH)), 160.9 (*i*-C<sub>6</sub>H<sub>3</sub>); <sup>29</sup>Si NMR (CDCl<sub>3</sub>):  $\delta$  –14.2 (Me<sub>2</sub>SiH), 1.0, 1.2 (MeSi). Anal. Calcd C<sub>213</sub>H<sub>510</sub>O<sub>3</sub>Si<sub>45</sub> (4384.17 g/mol): C, 58.35; H, 11.73; Obt.: C, 58.85; H, 10.97.

4.2.29.  $G_1O_3(NH_2)_6$  (**28**).  $C_3H_5NH_2$  (0.37 g, 6.42 mmol) was added to a THF solution (3 mL) of compound **25** (0.50 g, 0.49 mmol) in the presence of Karstedt catalyst (3% mol) and stirred at 120 °C for 3 days into a sealed ampoule. The volatiles were removed under vacuum, CH<sub>2</sub>Cl<sub>2</sub> was added to the residue and the solution was filtered through active carbon. After removal of volatiles compound **28** was obtained as a yellowish oil (0.59 g, 89%).

<sup>1</sup>H NMR (CDCl<sub>3</sub>): -0.09 (s, 9H, MeSi), -0.06 (s, 36H, Me<sub>2</sub>SiH), 0.48 (m, 12H, SiCH<sub>2</sub>), 0.54 (m, 30H, SiCH<sub>2</sub>), 1.29 (m, 18H, CH<sub>2</sub>), 1.40 (m, 24H, NH<sub>2</sub>, CH<sub>2</sub>), 1.74 (m, 6H, OCH<sub>2</sub>CH<sub>2</sub>), 2.63 (t, *J*=7.1 Hz, 12H, CH<sub>2</sub>N), 3.87 (t, *J*=6.3 Hz, 6H, OCH<sub>2</sub>), 6.04 (s, 3H, C<sub>6</sub>H<sub>3</sub>); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>):

 $\begin{array}{l} -5.1 \ (MeSi), -3.3 \ (Me_2Si), 12.3 \ (NCH_2CH_2CH_2), 13.8 \ (SiCH_2), 18.4, 18.6, \\ 20.0 \ (CH_2), \ 20.5 \ (OCH_2CH_2CH_2), \ 33.2 \ (OCH_2CH_2), \ 45.6 \ (NCH_2), \ 67.6 \\ (OCH_2), \ 93.7 \ (C_6H_3 \ (CH)), \ 160.9 \ (i-C_6H_3); \ ^{29}Si \ NMR \ (CDCl_3): \ 1.8 \\ (MeSi), \ 2.1 \ (Me_2Si). \ Anal. \ Calcd \ C_{69}H_{156}N_6O_3Si_9 \ (1370.78 \ g/mol): \ C, \\ 60.46, \ H, \ 11.47, \ N, \ 6.13; \ Obt.: \ C, \ 60.91, \ H, \ 11.26, \ N, \ 5.86. \end{array}$ 

4.2.30.  $G_2O_3(NH_2)_{12}$  (**29**). Following the procedure described for compound **28**, compound **29** was obtained as a colorless oil (0.47 g, 72%) from the reaction of **26** (0.50 g, 0.23 mmol) and  $C_3H_5NH_2$  (0.32 g, 5.59 mmol).

<sup>1</sup>H NMR (CDCl<sub>3</sub>): -0.11 (s, 18H, *Me*Si), -0.09 (s, 9H, *Me*Si), -0.07 (s, 72H, *Me*<sub>2</sub>SiH), 0.43 (m, 26H, *CH*<sub>2</sub>), 0.54 (m, 72H, *CH*<sub>2</sub>), 1.21 (s, 24H, NH<sub>2</sub>), 1.28 (m, 36H, *CH*<sub>2</sub>), 1.38 (m, 30H, *CH*<sub>2</sub>), 1.74 (m, 6H, OCH<sub>2</sub>*CH*<sub>2</sub>), 2.63 (t, *J*=7.1 Hz, 24H, *CH*<sub>2</sub>N), 3.85 (t, *J*=6.3 Hz, 6H, OCH<sub>2</sub>), 6.04 (s, 3H, C<sub>6</sub>H<sub>3</sub>); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>): -4.9(MeSi), -4.7 (*Me*Si), -3.3 (*Me*<sub>2</sub>Si), 12.3 (SiCH<sub>2</sub>), 13.8 (SiCH<sub>2</sub>), 18.4, 18.6, 18.8, 20.0, 20.1 (CH<sub>2</sub>), 20.6 (OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 28.3 (*C*H<sub>2</sub>CH<sub>2</sub>N), 33.3 (OCH<sub>2</sub>CH<sub>2</sub>), 45.7 (*C*H<sub>2</sub>N), 67.6 (OCH<sub>2</sub>), 93.7 (*C*<sub>6</sub>H<sub>3</sub> (*C*H)), 160.9 (*i*-C<sub>6</sub>H<sub>3</sub>); <sup>29</sup>Si NMR (CDCl<sub>3</sub>): 0.9 (MeS*i*), 1.7 (MeS*i*), 1.9 (Me<sub>2</sub>S*i*). Anal. Calcd C<sub>141</sub>H<sub>330</sub>N<sub>12</sub>O<sub>3</sub>Si<sub>21</sub> (2832.00 g/mol): C, 59.80; H, 11.75; N, 5.94; Obt.: C, 60.92; H, 10.03; N, 5.44.

4.2.31.  $G_3O_3(NH_2)_{24}$  (**30**). Following the procedure described for compound **28**, compound **30** was obtained as a colorless oil (0.24 g, 36%) from the reaction of **27** (0.50 g, 0.12 mmol) and C<sub>3</sub>H<sub>5</sub>NH<sub>2</sub> (0.62 g, 5.50 mmol).

<sup>1</sup>H NMR (CDCl<sub>3</sub>): -0.11 (s.a., 54H, MeSi), -0.07 (s, 144H,  $Me_2Si$ ), 0.52 (m, 222H, SiCH<sub>2</sub>), 1.21–1.50 (m, 186H, NH<sub>2</sub>, CH<sub>2</sub>), 1.74 (m, 6H, OCH<sub>2</sub>CH<sub>2</sub>), 2.63 (t, J=7.1 Hz, 48H, CH<sub>2</sub>N), 3.85 (t, J=6.3 Hz, 6H, OCH<sub>2</sub>), 6.04 (s, 3H, C<sub>6</sub>H<sub>3</sub>); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>): -4.9 (MeSi), -3.3 ( $Me_2Si$ ), 12.8 (CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>N), 14.1 (SiCH<sub>2</sub>), 17.9–20.6 (CH<sub>2</sub>), 27.1 (CH<sub>2</sub>CH<sub>2</sub>N), 33.4 (OCH<sub>2</sub>CH<sub>2</sub>), 45.1 (CH<sub>2</sub>N), 67.8 (OCH<sub>2</sub>), 93.7 (C<sub>6</sub>H<sub>3</sub> (CH)), 161.0 (*i*-C<sub>6</sub>H<sub>3</sub>); <sup>29</sup>Si NMR (CDCl<sub>3</sub>): 0.9 (MeSi), 1.7 (MeSi), 1.9 (Me<sub>2</sub>Si). Anal. Calcd C<sub>285</sub>H<sub>678</sub>N<sub>24</sub>O<sub>3</sub>Si<sub>45</sub> (5754.44 g/mol): C, 59.49; H, 11.88; N, 5.84; Obt.: C, 58.50; H, 11.67; N, 5.34.

4.2.32.  $G_2O_3(SiCl_2)_6$  (**31**). Following the procedure described for compound **1**, compound **31** was obtained as a colorless liquid (4.20 g, 94%) from **17** (2.20 g, 3.30 mmol) and HSiMeCl<sub>2</sub> (3.87 g, 0.033 mol).

<sup>1</sup>H NMR (CDCl<sub>3</sub>): -0.03 (s, 9H, *Me*Si), 0.53 (m, 6H, SiCH<sub>2</sub>), 0.66 (m, 12H, SiCH<sub>2</sub>), 0.75 (s, 18H, *Me*SiCl<sub>2</sub>), 1.16 (m, 12H, CH<sub>2</sub>SiCl<sub>2</sub>), 1.50 (m, 18H, CH<sub>2</sub>), 1.76 (m, 6H, OCH<sub>2</sub>CH<sub>2</sub>), 3.89 (t, *J*=6.6 Hz, 6H, OCH<sub>2</sub>), 6.04 (s, 3H, C<sub>6</sub>H<sub>3</sub>); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>): -5.2 (*Me*Si), 5.5 (*Me*SiCl<sub>2</sub>), 13.4 (SiCH<sub>2</sub>), 17.4 (CH<sub>2</sub>), 20.4 (OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 25.9 (CH<sub>2</sub>SiCl<sub>2</sub>), 33.1 (OCH<sub>2</sub>CH<sub>2</sub>), 67.5 (OCH<sub>2</sub>), 93.8 (C<sub>6</sub>H<sub>3</sub> (CH)), 160.9 (*i*-C<sub>6</sub>H<sub>3</sub>); <sup>29</sup>Si NMR (CDCl<sub>3</sub>): 2.0 (MeSi), 32.2 (MeSiCl<sub>2</sub>).

4.2.33.  $G_3O_3(SiCl_2)_{12}$  (**32**). Following the procedure described for compound **1**, compound **32** was obtained as a colorless liquid (4.26 g, 95%) from **18** (2.30 g, 1.61 mmol) and HSiMeCl<sub>2</sub> (3.90 g, 0.034 mol).

<sup>1</sup>H NMR (CDCl<sub>3</sub>): -0.07 (s, 9H, MeSi), -0.05 (s, 18H, MeSi), 0.59 (m, 54H, SiCH<sub>2</sub>), 0.75 (s, 36H, MeSiCl<sub>2</sub>), 1.16 (m, 24H, CH<sub>2</sub>SiCl<sub>2</sub>), 1.29 (m, 18H, CH<sub>2</sub>), 1.50 (m, 24H, CH<sub>2</sub>), 1.76 (m, 6H, OCH<sub>2</sub>CH<sub>2</sub>), 3.87 (t, *J*=6.6 Hz, 6H, OCH<sub>2</sub>), 6.04 (s, 3H, C<sub>6</sub>H<sub>3</sub>); <sup>13</sup>C NMR{<sup>1</sup>H} (CDCl<sub>3</sub>): -5.1 (MeSi), 5.5 (MeSiCl<sub>2</sub>), 13.8 (CH<sub>2</sub>Si), 17.3, 17.5, 18.5, 18.6, 18.8 (CH<sub>2</sub>), 20.6 (OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 25.9 (CH<sub>2</sub>SiCl<sub>2</sub>), 33.3 (OCH<sub>2</sub>CH<sub>2</sub>), 67.7 (OCH<sub>2</sub>), 93.7 (C<sub>6</sub>H<sub>3</sub> (CH)), 161.0 (*i*-C<sub>6</sub>H<sub>3</sub>); <sup>29</sup>Si NMR (CDCl<sub>3</sub>): 1.8 (MeS*i*), 32.1 (MeS*i*Cl<sub>2</sub>).

### Acknowledgements

This work has been supported by grants from Fondos de Investigación Sanitaria (FIS) of Ministerio de Sanidad y Consumo (PI061479), Red RIS RD06-0006-0035, FIPSE (24632/07), MNT-ERA NET 2007 (NAN2007-31198-E), Fundación Caja Navarra and Comunidad de Madrid (S-SAL-0159-2006) to M.A. M.-F., MNT-ERA NET 2007 (NAN2007-31135-E) and Fondos de Investigación Sanitaria (FIS) (PI080222) to R.G. Also supported by CIBER-BBN as an initiative funded by VI National R & D & i Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.

### Supplementary data

Selected NMR spectra of dendrons and dendrimers. Supplementary data associated with this article can be found in online version at doi:10.1016/j.tet.2010.09.063. These data include MOL files and InChIKeys of the most important compounds described in this article.

### **References and notes**

- 1. Astruc, D.; Boisselier, E.; Ornelas, C. Chem. Rev. 2010, 110, 1857.
- 2. Villaraza, A. J. L.; Bumb, A.; Brechbiel, M. W. Chem. Rev. 2010, 110, 2921.
- Dutta, T.; Jain, N. K.; McMillan, N. A. J.; Parekh, H. S. Nanomed.-Nanotechnol. Biol. Med. 2010, 6, 25.
- Paleos, C. M.; Tsiourvas, D.; Sideratou, Z.; Tziveleka, L. Curr. Top. Med. Chem. 2008, 8, 1204.
- 5. Cheng, Y. Y.; Xu, Z. H.; Ma, M. L.; Xu, T. W. J. Pharm. Sci. 2008, 97, 123.
- 6. Andrés, R.; de Jesús, E.; Flores, J. C. New J. Chem. 2007, 31, 1161.
- Fu, Y.; Nitecki, D. E.; Maltby, D.; Simon, G. H.; Berejnoi, K.; Raatschen, H. J. Bioconjugate Chem. 2006, 17, 1043.
- 8. Jang, W. D.; Kataoka, K. J. Drug Deliv. Sci. Technol. 2005, 15, 19.
- Yokoyama, S.; Otomo, A.; Nakahama, T.; Okuno, Y.; Mashiko, S. Dendrimers for optoelectronic applications In. Dendrimers V: Functional and Hyperbranched Building Blocks, Photophysical Properties, Applications in Materials and Life Sciences; 2003; Vol. 228, p 205.
- Reek, J. N. H.; de Groot, D.; Oosterom, G. E.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. C.R. Chim. 2003, 6, 1061.
- 11. Kobayashi, H.; Brechbiel, M. W. Mol. Imaging 2003, 2, 1.
- 12. Niu, Y. H.; Crooks, R. M. C.R. Chim. 2003, 6, 1049.
- 13. Twyman, L. J.; King, A. S. H.; Martin, I. K. Chem. Soc. Rev. 2002, 31, 69.
- 14. Dykes, G. M. J. Chem. Technol. Biotechnol. 2001, 76, 903.
- Newkome, G. R.; Moorefield, C. N.; Vögtle, F. Dendrimers and Dendrons: Concepts, Syntheses, Applications; Wiley-VCH: Weinheim, Germany, 2001.
  Newkome, G. R.: Moorefield, C. N.: Vögtle, F. Dendritic Molecules: Concepts
- Newkome, G. R.; Moorefield, C. N.; Vögtle, F. Dendritic Molecules: Concepts, Syntheses, Perspectives; VCH: Weinheim, Germany, 1996.
- Cuadrado, I.; Morán, M.; Losada, J.; Casado, C. M.; Pascual, C.; Alonso, B.; Lobete, F. In Advances in Dendritic Macromolecules; Newkome, G. R., Ed.; Jai: Greenwich, 1999; 3, p 151.
- 18. Duncan, R.; Izzo, L. Adv. Drug Deliv. Rev. 2005, 57, 2215.
- Jevprasesphant, R.; Penny, J.; Jalal, R.; Attwood, D.; McKeown, N. B.; D'Emanuele, A. Int. J. Pharm. 2003, 252, 263.
- Malik, N.; Wiwattanapatapee, R.; Klopsch, R.; Lorenz, K.; Frey, H.; Weener, J. W.; Meijer, E. W.; Paulus, W.; Duncan, R. 9th International Symposium on Recent Advances in Drug Delivery Systems; Utah: Salt Lake City, 1999; p 133.
- 21. Brazeau, G. A.; Attia, S.; Poxon, S.; Hughes, J. A. Pharm. Res. 1998, 15, 680.
- Pietersz, G. A.; Tang, C. K.; Apostolopoulos, V. *Mini-Rev. Med. Chem.* 2006, 6, 1285.
  Caminade, A. M.; Majoral, J. P. Prog. Polym. Sci. 2005, 30, 491.

- Blanzat, M.; Turrin, C. O.; Aubertin, A. M.; Couturier-Vidal, C.; Caminade, A. M.; Majoral, J. P.; Rico-Lattes, I.; Lattes, A. Chembiochem 2005, 6, 2207.
- Solassol, J.; Crozet, C.; Perrier, V.; Leclaire, J.; Beranger, F.; Caminade, A. M.; Meunier, B.; Dormont, D.; Majoral, J. P.; Lehmann, S. J. Gen. Virol. 2004, 85, 1791.
- Lee, J. H.; Lim, Y. B.; Choi, J. S.; Choi, M. U.; Yang, C. H.; Park, J. S. Bull. Korean Chem. Soc. 2003, 24, 1637.
- Kleij, A. W.; van de Coevering, R.; Gebbink, R. J. M. K.; Noordman, A. M.; Spek, A. L.; van Koten, G. *Chem. Eur. J.* **2001**, *7*, 181.
- Mumper, R. J.; Bell, M. A.; Worthen, D. R.; Cone, R. A.; Lewis, G. R.; Paull, J. R. A.; Moench, T. R. Drug Develop. Ind. Pharm. 2009, 35, 515.
- Meyers, S. R.; Juhn, F. S.; Griset, A. P.; Luman, N. R.; Grinstaff, M. W. J. Am. Chem. Soc. 2008, 130, 14444.
- Hussain, M.; Shchepinov, M. S.; Sohail, M.; Benter, I. F.; Hollins, A. J.; Southern, E. M.; Akhtar, S. J. Control. Release 2004, 99, 139.
- Made, A. W. v. d.; Leeuwen, P. W. N. M. v. J. Chem. Soc., Chem. Commun. 1992, 1400.
  Zhou, L. L.; Hadjichristidis, N.; Toporowski, P. M.; Roovers, J. Rubber Chem.
- *Technol.* **1992**, 65, 303. 33. Roovers, J.; Toporowski, P. M.; Zhou, L. L. *Abstr. Pap. Am. Chem. Soc.* **1992**, 203, 200.
- 34. Van der Made, A. W.; Van Leeuwen, P. N. M. W.; de Wilde, J. C.; Brandes, R. A. C. Adv. Mater. **1993**, 5, 466.
- Seyferth, D.; Son, D. Y.; Rheingold, A. L.; Ostrander, R. L. Organometallics 1994, 13, 2682.
- 36. Bruning, K.; Lang, H. J. Organomet. Chem. 1998, 571, 145.
- 37. Krska, S. W.; Seyferth, D. J. Am. Chem. Soc. 1998, 120, 3604.
- 38. Schlenk, C.; Frey, H. Monatsh. Chem. 1999, 130, 3.
- Rasines, B.; Hernández-Ros, J. M.; de las Cuevas, N.; Copa-Patiño, J. L.; Soliveri, J.; Muñoz-Fernández, M. A.; Gómez, R.; de la Mata, F. J. Dalton Trans. 2009, 8704.
- Weber, N.; Ortega, P.; Clemente, M. I.; Shcharbin, D.; Bryszewska, M.; de la Mata, F. J.; Gómez, R.; Muñoz-Fernández, M. A. J. Control. Release 2008, 132, 55.
- Bermejo, J. F.; Ortega, P.; Chonco, L.; Eritja, R.; Samaniego, R.; Mullner, M.; de Jesús, E.; de la Mata, F. J.; Flores, J. C.; Gómez, R.; Muñoz-Fernández, A. *Chem.—Eur. J.* 2007, 13, 483.
- Yamada, A.; Hatano, K.; Matsuoka, K.; Koyama, T.; Esumi, Y.; Koshino, H.; Hino, K.; Nishikawa, K.; Natori, Y.; Terunuma, D. *Tetrahedron* **2006**, *62*, 5074.
- Nishikawa, K.; Matsuoka, K.; Watanabe, M.; Igai, K.; Hino, K.; Hatano, K.; Yamada, A.; Abe, N.; Terunuma, D.; Kuzuhara, H.; Natori, Y. J. Infect. Dis. 2005, 191, 2097.
   Matsuoka, K.; Terabatake, M.; Esumi, Y.; Terunuma, D.; Kuzuhara, H. Tetrahe-
- dron Lett. **1999**, 40, 7839.
- 45. Maraval, V.; Pyzowski, J.; Caminade, A. M.; Majoral, J. P. J. Org. Chem. 2003, 68, 6043.
- 46. Grayson, S. M.; Fréchet, J. M. J. Chem. Rev. 2001, 101, 3819.
- 47. Hawker, C. J.; Fréchet, J. M. J. J. Chem. Soc., Chem. Commun. 1990, 1010.
- Kang, T.; Amir, R. J.; Khan, A.; Ohshimizu, K.; Hunt, J. N.; Sivanandan, K.; Montáñez, M. I.; Malkoch, M.; Ueda, M.; Hawker, C. J. *Chem. Commun.* 2010, 46, 1556.
- Carlmark, A.; Hawker, C. J.; Hult, A.; Malkoch, M. *Chem. Soc. Rev.* **2009**, *38*, 352.
  Wu, P.; Malkoch, M.; Hunt, J. N.; Vestberg, R.; Kaltgrad, E.; Finn, M. G.; Fokin, V. W. Chen, and C. C. Cheng, C. Cheng, C. Cheng, C. C. Cheng, C. C
- V.; Sharpless, K. B.; Hawker, C. J. Chem. Commun. 2005, 5775.
- Rodríguez, L. I.; Rossell, O.; Seco, M.; Müller, G. Organometallics **2008**, *27*, 1328.
  van Heerbeek, R.; Kamer, P. C. J.; van Leeuwen, P. N. M. W.; Reek, J. N. H. Org. Biomol. Chem. **2006**, *4*, 211.
- Andrés, R.; de Jesús, E.; de la Mata, F. J.; Flores, J. C.; Gómez, R. *Eur. J. Inorg. Chem.* 2005, 3742.
- 54. Tuchbreiter, A.; Werner, H.; Gade, L. H. Dalton Trans. 2005, 1394.
- Karstedt, B.D. Fr. 19681206 (to General Electric Co.), 1968. Chem. Abstr. 1969, 71, 91641.
- Krupková, A.; Čermák, J.; Walterová, Z.; Horský, J. Macromolecules 2010, 43, 4511.
- Although this compounds is commercial available, its synthesis is not described in bibliography (see Experimental).
- 58. Hawker, C. J.; Fréchet, J. M. J. J. Am. Chem. Soc. 1990, 112, 7638.